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SUMMARY OF THE DOCTORAL DISSERTATION

One of the fundamental problems of analysis, technology, economics and other branches
of science is the search for minima and critical points of functions. One of the methods
leading to this goal is the deformation of a given function to a convex function, searching for
critical points of this deformation and iterating this process. Reducing a function to a convex
or strongly convex function leads to easy determination of critical points and minima of this
deformation. These are the unique points where the gradient is zero.The classic approach
to convexifying of a function f : Rn → R on bounded and convex sets is to add a strongly
convex function b : Rn → R such that f + b is a strongly convex function on this set (see
for instance papers of A.N.Tikhonov, W.B.Liu, C.A.Flouudas and S.Zlobec for quadratic
function b(x) = γ|x|2, γ > 0). We describe this more precisely.

Let b : Rn → R be a C k class µ-strongly convex function, k ≥ 2, µ > 0. Let X ⊂ Rn be
a compact and convex set, let f : Rn → R be a function of class C k and let D ∈ R be a
positive number such that

|∂2βf(x)| ≤ D for x ∈ X and β ∈ Sn−1,

where Sn−1 the unit sphere in Rn, and ∂2βf(x) is the second order derivative of f in the
direction β at x. One can directly check that (see. uwaga2.2.3 and fakt 3.1.1):

For any ξ ∈ Rn and N > D/µ, the function φN,ξ : Rn → R defined by

φN,ξ(x) = Nb(x− ξ) + f(x), x ∈ Rn,

is strongly convex on X (more precisely Nµ−D-strongly convex).

In this paper, we will compare the above approach to convexifying of a function that
takes only positive values with another approach of multiplying it by a power of a strongly
convex function. The latter approach was proposed in 2015 by K. Kurdyka, S. Spodzieja
and continued by K. Kurdyka, K. Rudnicka, S. Spodzieja. More precisely, by K. Kurdyka,
S. Spodzieja, a positive function f of class C 2 is convex on a compact and convex set X ⊂ Rn

by multiplying the function f by (1 + |x|2)N for some N , and by K. Kurdyka, K. Rudnicka,
S. Spodzieja – by multiplying the function f by exp(N |x|2).

In Chapter 2 we generalize these results and show that: If X ⊂ Rn is a compact and
convex set and f : X → R is a function of the class C 2 that takes only positive values, then
for any strongly convex function b : Rn → R there is N0 > 0 such that for each N ≥ N0 and
ξ ∈ X, the function

(1) ϕN,ξ(x) = bN (x− ξ)f(x), x ∈ Rn,
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is strongly convex on X.

In the case where the function f is a polynomial, the exponent N can be estimated
effectively in terms of the radius of the set X (i.e., sup{|x| : x ∈ X}) of the modules of the
polynomial coefficients and m = inf{f(x) : x ∈ X} (see wniosek 2.2.2). Therefore, in the
case of positive functions on compact and convex sets, both adding a multiple of a strongly
convex function to the function and multiplying it by the power of such a function have a
similar effect, but the first method uses a smaller coefficient N . If we additionally assume
that b is a logarithmically strongly convex function (i,e., ln b is a strongly convex function),
then ϕN,ξ is also a logarithmically strongly convex function (see wniosek 2.2.9). In the case
when X is a semialgebraic, compact and convex set, the coefficients of the polynomials
describing X and the coefficients of the polynomial f are integers (or rational numbers), the
exponent N can be determined fully efficiently (see Twierdzenia 2.2.10 and 2.2.12).These
theorems are obtained using the result of G. Jeronimo, D. Perrucci, E. Tsigaridas (2013).

In Chapter 3, we will compare the classical approach to problem convexifying of a function
with the above for any strongly convex function b : Rn → R and a positive function f on
a closed and convex (not necessarily bounded) set. In this chapter, we convexiying of a
function f by multiplying it by b(N(x − ξ)) instead of bN (x − ξ). This approach simplifies
some calculations.

Uwaga 2.2.3 and fakt 3.1.1 are difficult to apply to unbounded sets. Namely, we have

Fact 3.1.2. Let b : Rn → (0,+∞) be a convex function of class C 2, let X ⊂ Rn be a convex
and closed set, let f : Rn → R be a function of class C 2 and let N > 0. If for any ξ ∈ X,
the function φN,ξ defined by (1) is convex on X, then

∂2βφN,ξ(ξ) = N∂2βb(0) + ∂2βf(ξ) ≥ 0 for any β ∈ Sn−1.

In particular, ∂2βf , β ∈ Sn−1, are bounded together from below on X.

Therefore, fakt 3.1.1 and uwaga 2.2.3 can be extended to the case of unbounded sets
only if the second-order directional derivatives ∂2βf , β ∈ Sn−1, together are bounded from
below on X. In the general case, instead of the constant N , we need to choose a function
that depends on |ξ|. Namely, assume that f has a polynomial second-order growth, i.e.,

|∂2βf(x)| ≤ D(1 + |x|)α for x ∈ X i β ∈ Sn−1,

for some D > 0, and α ∈ N and b : Rn → R is a function of class C k, k ≥ 2, and
logarithmically µ-strongly convex, µ > 0, such that 0 = argminRn b i b(0) = 1, where
argminX b is a point in X where b takes the smallest value in X.

Let

N(|ξ|) =
D

µ

(
|ξ|+ 1 +

√
α

µ

)α
+ 1

Then, for any ξ ∈ Rn a function φξ : Rn → R defined by

φξ(x) = N(|ξ|)b(x− ξ) + f(x), x ∈ Rn,
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is strongly convex on X (more precisely µ-strongly convex), see Lemma 3.2.1.

In particular, the assertion of the above lemma can be obtained for the function ψξ(x) =

Nb(ξ)b(x− ξ) + f(x), for a sufficiently large constant N (see lemat 3.2.5).

In the case when we obtain the convexifying of a function by multiplying it by x 7→
b(N(x − ξ)), where b is a strongly convex function or logarithmically strongly convex, we
must of course assume that the function only takes positive values on X. Then we have

Fact 3.1.5. Let b : Rn → (0,+∞) be a µ-strongly convex function of class C 2 such that
0 = argminRn b, let X ⊂ Rn be a convex and closed set and let f : Rn → (0,+∞) be a
function of class C 2. Let

ϕN,ξ(x) = b(N(x− ξ))f(x),

where N > 0.

(i) If for any ξ ∈ X, ϕN,ξ is a strictly convex function on X, then C∂2βf(x) ≥ −f(x) for
any x ∈ X and β ∈ Sn−1 and some constant C > 0.

(ii) If b is the logarithmically µ-strongly convex function and C∂2βf(x) ≥ −f(x) and
Cf(x) ≥ |∂βf(x)| for any x ∈ X, β ∈ Sn−1 and some constant C > 0, then for N >
2C√
mu

+ 1
Cµ , the function ϕN,ξ is strictly convex on X.

The main difficulty in applying the above fact is the estimation of the constant C. This
difficulty can be overcome when we convexifying of the polynomial. More specifically, let
f ∈ R[x], where x = (x1, . . . , xn) is a system of a variable, be a polynomial of degree d,
and let f = f0 + · · · + fd, where fj is a homogeneous polynomial of degree j or zero. Let
fd∗ = min|x|=1 fd(x). Obviously, fd∗ > 0 if and only if the leading form fd of the polynomial
f takes only positive values Rn \ {0}. Then we can get a convexifying of polynomial f by
multiplying it by the function b(N(x− ξ)), ξ ∈ Rn. Namely, we have

Theorem 3.3.1. Assume that fd∗ > 0 and there exists m > 0 such that

f(x) ≥ m for x ∈ Rm.

Then there is an effectively compatible N0 such that for any N > N0 and for any ξ ∈ Rn

the function ϕN,ξ : Rn → R defined by

ϕN,ξ(x) = b(N(x− ξ))f(x)

is µ-strongly convex in Rn.

Chapters 4, 5 and 6 we deal with iterations of a mapping that assigns to each point the
only critical point of the convexifying of function f .

In Chapter 4, we assume that X ⊂ Rn is a convex and compact set, and that the function
b : Rn → R is strongly convex of class C k, k ≥ 2, such that 0 = argminRn . Let f : Rn → R
be a function of the class C k. Then there is a number N ≥ 1 such that for any ξ ∈ Rn, the
function

φN,ξ(x) = Nb(x− ξ) + f(x)
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is strongly convex on X. We define a mapping

κN : X 3 ξ 7→ argminX φN,ξ ∈ Rn.

If

Xf≤r := {x ∈ Rn : f(x) ≤ r} ⊂ X,

we show that (see lemat 4.1.3 and 4.1.4) the following properties hold:

(i) The mapping κN is a diffeomorphism of class C k−1 from Xf≤r to Y = κN (Xf≤r) ⊂
Xf≤r.

(ii)The set of fixed points of κN |Xf≤r is equal to Σf ∩Xf≤r, where Σf is the set of critical
points of f .

In theorem 4.2.1(c)we show that: If f : Rn → R is a semialgebraic function of class C 2

then for any ξ ∈ Xf≤r, the limit point limν→∞ κνN (ξ) exists and belongs to Σf .

The proof of this theorem, is based on showing the monotonicity of the sequence f(ξν)

(see wniosek 4.1.5) and applying the comparison principle from K. Kurdyka and S. Spodzieja
to show that the series

∑∞
ν=0 dist(κνN (ξ), f−1(f(κν+1

N (ξ)))) is convergent. The idea of this
proof is based on the proof of Theorem 7.5 from the paper by K. Kurdyka and S. Spodzieja.
The proof of this theorem is not a direct transfer of the proof Theorem 7.5 from the paper
by K. Kurdyka and S. Spodzieja, because in this paper is considered convexification of f by
multiplying it by (1 + |x|2)N , and we consider convexification this function by adding Nb to
it.

Assuming that the function f is semialgebraic, the above theorem allows us to define the
mapping

κN,∗ : Xf≤r → Σf ∩Xf≤r ,

given by κN,∗(ξ) = limν→∞ κνN (ξ).

Assuming that the function f has only one critical value on Xf≤r, we will show that the
mapping κN,∗ is continuous. Namely, we have

Theorem 4.3.1. Let 0 ∈ IntXf≤r and let f(0) be the minimal value of f . Then there exists
f(0) < δ < r such that the sequence κνN uniformly convergents to κN,∗ in the set U = Xf≤δ.
In particular the mapping

κN,∗|U : U → U ∩ Σf

is continuous and κN,∗(ξ) = ξ for ξ ∈ U ∩ Σf . Consequently κN,∗|U is a deformation
retraction and the set U ∩ Σf is a retract of U .

In Chapter 5, we transfer some properties of the mapping κN to the case of unbounded
sets. Among other things, in the case where the convexification of the function f is of the
form

ψξ(x) = N(ξ)b(x− ξ) + f(x), (ξ, x) ∈ Rn × Rn
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and for a convex and closed set X,

κ(ξ) = argminX ψξ ∈ X,

we show that: For any ξ ∈ X, the point κ(ξ) is the anique lower critical point of ψξ on X.
A similar fact holds for the function

κN : X 3 ξ 7→ argminX b(N(x− ξ))f(x).

In Chapter 6, we trasver the results from chapter four for the mapping Xf≤r 3 ξ 7→
argmin|x|≤R b

N (x − ξ)f(x) ∈ X, assuming that the set Xf≤r is compact and convex. In
this case, all of the above properties of κN are true. If we additionally assume that b(x) =

exp(|x|2) and f is a polynomial, then the mapping κN has some additional properties, among
others it is an analytic and semialgebraic mapping, i.e. it is a Nash maping. The mapping
κN : Xf,r → κN (Xf,r) is the inverse of

κN (Xf,r) 3 x 7→ x+
1

2Nf(x)
∇f(x) ∈ Xf,r ,

so it is an analytic and semialgebraic mapping, i.e., it is a Nash mapping.

At the end of Chapter 6, we deal with the convergence problem of the sequence ξν
|ξν | ,

where ξν = κνN (ξ), ν ∈ N, and ξ ∈ Rn, i.e. the problem of convergence of a sequence of
spherical parts of the sequence ξν . This is a transfer of Rene Thom’s problem for the gradient
field trajectory (solved by K. Kurdyka, T. Mostowski, A, Parusiński) to the discrete case.
We consider this problem under assumption that ξν → 0, when ν → ∞, and with some
additional quite restrictive assumptions.

Part of the results of this work has already been published in the work of A.N. Abdullah,
K. Rosiak, S. Spodzieja. This applies to point 2.2 and Chapter 6.
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