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Abstract 

In this work, five new multi-objective evolutionary algorithms are constructed and 

programmed by using Matlab. They are designed to search for a Pareto optimum of a multi-

objective optimization problem. These algorithms are based on modified NSGA-II, hybrid 

algorithms, big population and multi-tasking. We use the DSC algorithm that is exploring 

similarities and dissimilarities between solutions (chromosomes represented as binary strings). 

Then, a special way to discover a schema of a binary string (the DSDSC algorithm) is used. 

Also, the effect of a big initial population is applied. 

To prove the efficiency of these algorithms, fourteen test functions were used. We used 

nine test functions without constraint, and five test functions with constraint. One of them is with 

one variable, five functions with two variables, one function with three variables, one with four 

variables, one function with six variables, two functions with ten variables, and three functions 

with 30 variables. The results showed, in most cases, the superiority of the algorithms proposed 

in this thesis in run time. 

This thesis consists of six chapters. Chapter one is a general introduction to optimization. 

Chapter two contains a literature review and the discussion of performance measures for multi-

objective optimization algorithms. In the third chapter, an algorithm called NSDSC is described, 

which combines using the dissimilarity operator and the similarity operator with random 

generation of a part of each new population, and building Pareto fronts. Also, a modification of 

NSDSC, called NS-DSDSC, is presented.  The fourth chapter introduces two new algorithms, 
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first Hybrid NSDSC with NSGA-II algorithm, second the First Big population Hybrid NSDSC 

with NSGA-II algorithm. The fifth chapter contains evolutionary multi-tasking algorithm, 

finally, chapter six contains some conclusions of this work. 

 

Streszczenie 

W tej pracy skonstruowano i zaprogramowano pięć nowych wielokryterialnych 

algorytmów ewolucyjnych przy użyciu Matlaba. Zostały one zaprojektowane w celu 

poszukiwania optimum Pareto wielokryterialnego problemu optymalizacji. Algorytmy te są 

oparte na zmodyfikowanym NSGA-II, algorytmach hybrydowych, dużej populacji i 

wielozadaniowości. Używamy algorytmu DSC, który bada podobieństwa i różnice między 

rozwiązaniami (chromosomy reprezentowane jako ciągi binarne). Następnie stosuje się specjalny 

sposób odkrywania schematu ciągu binarnego (algorytm DSDSC). Zastosowano również efekt 

dużej początkowej populacji. Aby udowodnić wydajność tych algorytmów, użyto czternastu 

funkcji testowych. Użyliśmy dziewięciu funkcji testowych bez ograniczeń i pięciu funkcji 

testowych z ograniczeniami. Jedna z nich jest z jedną zmienną, pięć funkcji z dwiema 

zmiennymi, jedna funkcja z trzema zmiennymi, jedna z czterema zmiennymi, jedna funkcja z 

sześcioma zmiennymi, dwie funkcje z dziesięcioma zmiennymi i trzy funkcje z 30 zmiennymi. 

Wyniki wykazały, w większości przypadków, wyższość algorytmów zaproponowanych w tej 

rozprawie jeśli chodzi o czas wykonywania. 

Rozprawa składa się z sześciu rozdziałów. Rozdział pierwszy jest ogólnym 

wprowadzeniem do optymalizacji. Rozdział drugi zawiera przegląd literatury i dyskusję na temat 

miar wydajności dla wielokryterialnych algorytmów optymalizacji. W rozdziale trzecim opisano 

algorytm o nazwie NSDSC, który łączy użycie operatora odmienności i operatora podobieństwa 

z losowym generowaniem części każdej nowej populacji i budowaniem frontów Pareto. 

Przedstawiono również modyfikację NSDSC o nazwie NS-DSDSC. Czwarty rozdział 

wprowadza dwa nowe algorytmy, pierwszy Hybrid NSDSC z algorytmem NSGA-II, drugi First 

Big population Hybrid NSDSC z algorytmem NSGA-II. Piąty rozdział zawiera ewolucyjny 

algorytm wykorzystujący wielozadaniowość, a rozdział szósty zawiera pewne wnioski z tej 

pracy. 
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CHAPTER ONE: Introduction  

 

1.1 Overview 

In this chapter we provide an overview of the main optimization methods for Multi-

Objective Optimization (MOO). We mention some classical methods, and focus on Non-

dominated Sorting Genetic Algorithms (NSGA), also principles of MOO and the scalarization 

method.  

  

1.2 Principles of Optimization  

In any problem involving decision making, be it in engineering or in economics, 

optimization plays a crucial role. The task of decision making entails choosing between various 

alternatives. Our desire to make the "best" decision stands behind the choice. The goodness of the 

alternatives is measured by an objective function or performance index.  

Optimization theory and techniques deal with selecting the best alternative in the sense of 

a given objective function. The area of optimization has received enormous attention in recent 

years, primarily because of the rapid progress in computer technology, including the development 

and availability of user-friendly software, high-speed and parallel processors, and artificial neural 

networks [1]. 

Search algorithms, also known as optimization approaches, are one possible way to assist 

a decision maker in making a good solution choice. Real-time applications can benefit from the 

use of optimization algorithms [2]. 

Optimization is a task of searching for a set of decision variables which would minimize 

or maximize objective function subjected to satisfying constraints [3]. 

There is no universal method, but a set of tools which requires a lot of experience to be 

used properly [4]. 
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1.3  Classification of Optimization Problems 

There are many ways to classify optimization problems, and different classification 

schemes are appropriate for different purposes. Some common classification schemes are the 

following.  

Linear vs nonlinear optimization: This classification is based on the type of constraints 

and objective function that the optimization problem has. Linear optimization problems have 

linear constraints and a linear objective function, while nonlinear optimization problems may 

have nonlinear constraints and/or a nonlinear objective function [5], [6], [7]. 

Convex vs nonconvex optimization: This classification is based on the geometry of the 

objective function and constraints. Convex optimization problems have an objective function and 

constraints that are both convex, which means that they have a "bowl" shaped geometry. 

Nonconvex optimization problems may have a more complicated geometry [8], [9]. 

Continuous vs discrete optimization: This classification is based on the type of decision 

variables that the optimization problem has. Continuous optimization problems have decision 

variables that can take on any value in a continuous range, while discrete optimization problems 

have decision variables that can only take on certain discrete values [9], [10]. 

Single-objective vs multi-objective optimization: This classification is based on the 

number of objective functions that the optimization problem has. Single-objective optimization 

problems have a single objective function to be minimized or maximized, while multi-objective 

optimization problems have multiple objective functions that must be balanced in some way [11], 

[12], [13]. 

Deterministic vs stochastic optimization: This classification is based on the presence or 

absence of randomness in the optimization problem. Deterministic optimization problems have 

no randomness, while stochastic optimization problems have some element of randomness that 

must be taken into account in the optimization process [14].  

Static vs Dynamic Optimization Problems. Static Optimization Problem: This kind 

optimization happens when variables don’t depend on each other, Dynamic Optimization 

Problem: This happens when some design variables depend on some other design variables [15]. 



Aisha Younus                                            New algorithms for multi-objective optimization …Chapter 1 

 18 

 

 

1.4 Introduction to Multi-Objective Optimization 

As the name suggests, multi-objective optimization involves optimizing a number of 

objectives simultaneously. The problem becomes challenging when the objectives are in conflict 

with each other, that is, the optimal solution of one objective function is different from that of the 

other. In solving such problems, with or without the presence of constraints, these problems give 

rise to a set of trade-off-optimal solutions, popularly known as Pareto-optimal solutions. Due to 

the multiplicity in solutions, these problems were proposed to be solved suitably using 

Evolutionary Multi-Objective Optimization algorithms (EMO) which use a population approach 

in its search procedure [16]. 

Modern optimization has seen a tremendous increase in the field of multi-objective 

optimization. There are numerous techniques and algorithms available to solve multi-objective 

optimization issues. The techniques fall into two types: 

(i) Traditional approaches, which rely on direct or gradient-based techniques and 

follow some mathematical principles, Classical methods mostly attempt to 

scalarize multiple objectives and perform repeated applications (multiple runs) 

to find a set of Pareto-optimal solutions.  

(ii)  Non-traditional approaches that follow some natural or physical principles, 

EMO methods attempt to find multiple Pareto-optimal solutions in a single 

simulation run [17].  

 

1.4.1 Some of EMO and Non-elitist Methodologies 

Since the beginning of the 1990s, multi-objective optimization (MOO) approaches have 

adequately demonstrated their expertise in identifying a collection of well-converged and well-

diversified non-dominated solutions to various two- and three-objective optimization problems. 

However, there are a lot of optimization problems with four or more objectives in real-world 

applications [18], [19]. 
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The Evolutionary Algorithms (EA) researchers realized that they had to solve multi-

objective optimization problems. In 1967, Rosenberg proposed a Weighted-Sum (WS) approach 

to convert multiple objectives into a single goal [20], [21].   

The Weighted-Sum method is called generated method, because we generate a point 

every time, also it applies a single objective method many times and not every Pareto optimal 

point can be found by this method, because of inability to find some Pareto optimal solutions, 

those in non-convex region, also some difficulties in the WS method arise because one needs to 

know weights of points. However, a solution generated by this approach is Pareto-optimal.  

The most famous method for solving MOO problems is Vector-Evaluated GA (VEGA), 

that was suggested by David Schaffer in 1984, the VEGA is a very simple method, so suppose 

we have two objectives, the method divides population into two halves,  the first half evaluates   , 

the second half evaluates   , and then recombination of the whole population takes place [20], 

[22]. 

In 1989, Goldberg's suggestion was to use the concept of dominance to allocate more 

copies to the non-dominated individuals in population, since diversity is another concern, it has 

also been proposed to use a niching strategy, where niching operator controls the selection 

pressure on population members to prevent the population from being dominated by a single 

solution [20]. To implement this idea, at least three independent groups of researchers developed 

different versions of multi-objective evolutionary algorithms during 1993-1994 [20]. 

In 1993, Fonseca and Fleming suggested a Multi-Objective GA (MOGA), in which all 

non-dominated population members are assigned a rank one, other individuals are evaluated by 

counting the number of solutions (denoted by k) that dominate a given solution, then a rank (k+1) 

is assigned to this solution. The selection procedure then selects the lowest-rank solutions to form 

the mating pool [20], [23]. 

There are many studies that talk about of EMO and Non-elitist Techniques:  Vector 

Optimized EA (VOEA) [24], [5], Weight Based GA (WBGA) [21], Multiple Objective GA 

(MOGA) [25], [26], Non-Dominated Sorting GA (NSGA) [27], Niched Pareto GA (NPGA) [28] 

and Predator-Prey ES [29].  
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1.4.1.1 Difficulties with Non-Elitist Approaches 

Non-elitist strategies have the following three defects: (1) the Pareto-optimal individuals 

that have been found are not preserved over time, (2) they have difficulty to maintain variety on 

the Pareto frontier, (3) the convergence of solutions towards the Pareto frontier is slow [30]. 

New approaches have been used to overcome the aforementioned challenges, such as the 

application of niching, clustering, and grid-based techniques to efficiently distribute solutions on 

the Pareto front [30], [31].  

 

1.4. 2 Some of EMO and Elitist Methodologies 

Non-elitist EMO methodologies mentioned above, give a good head start to the research 

and application of EMO, but they have a common problem that they don't have an elite-

preserving mechanism [20].  

However, as the second generation of algorithms, plenty of EMO methods were proposed 

which implemented elite-preserving.  

In 1995, Osychka and Kundu  suggested a Distance-based Pareto GA as new GA-based 

multicriteria optimization method [32], while in 2016 the authors of [33] proposed Distance-

based Pareto Evolutionary Algorithm (DPEA), as a new algorithm, which strongly depends on 

the ideas behind Strength Pareto Evolutionary Algorithm (SPEA and SPEA2) [34]. SPEA and 

SPEA2 are not able to handle infeasible solutions satisfactorily, while DPEA keeps the infeasible 

solutions in population, so that the evolutionary process will not be delayed [33]. 

In 1996 Kite et al. have presented Thermo Dynamical GA (TDGA) [35], a GA using the 

concepts of the entropy and the temperature in the selection operation, for multi-objective 

optimization. 

 In 1999, the author of [36], proposed the Strength Pareto EA (SPEA), using an external 

population (an archive) where all non-dominated solutions found are stored. The archive updates 

in each iteration, all solutions from the archive are non-dominated [25], [36], [37]. 

In 2002, Deb presented “A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II” 

[38], also he presented this algorithm in 2001 in the book [39], this NSGA-II was faster than 
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NSGA in time complexity of computations:         where NSGA was         . Moreover, 

NSGA-II has a principle of elitism where NSGA does not have it. The NSGA-II procedure is one 

of the popularly used EMO procedures which attempts to find multiple Pareto-optimal solutions 

in a multi-objective optimization problem and has the following three features: 

1) it uses an elitist principle, 

2) it uses an explicit diversity preserving mechanism, and 

3) it emphasizes non-dominated solutions [40], [16]. 

The first and second features of NSGA-II are included in our previous optimization 

algorithm  “A New Genetic Algorithm Based on Dissimilarities and Similarities, 2017” [41], for 

Single Objective Optimization (SOO),  therefore we have decided to use it combined with 

NSGA-II.   But instead of using GA operators for optimization algorithm, we use Dissimilarities 

and Similarities of Chromosomes operators (DSC).  

  In 1999, Knowles and Corne presented a  Pareto-Archived ES (PAES) [42], the idea was 

to maintain a finite-sized archive of non-dominated solutions, it was used instead of a local 

search tool, the global search procedure based on crossover operators was applied to the set of 

candidate solutions, which undergo a local search and replace their origin in Lamarck's spirit. 

Where, the Lamarckian spirit of Baldwinian criteria can be used to incorporate learning into an 

EA. According to the Lamarckian philosophy, an individual genetic structure is affected by or 

reflects their learning outcomes. In actuality, this back-coding means that the population has 

better genotype and fitness values replace the initial ones, making every successful behavior 

inheritable [43]. 

 

1.5 The Concept of Domination 

The goal of multi-objective optimization is to locate nondominated solutions, and the 

domination idea offers a useful tool to compare solutions for multi-objective optimization [44]. 

The MOO problem using can be written as follows [54]: 

                                (1.1) 
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where   is a solution,   is the number of objective functions,   is a feasible set,       is i-th 

objective function, and         means that the functions are minimized or maximized 

simultaneously . 

A solution is said to dominate another solution if it is better or equal in all objectives and 

strictly better in at least one objective [45], as the following mathematical formula shows.  

Solution    dominates    (denoted by       ) if:  

               for all               and                for at least one  , where   is 

the number of objective functions [22]. 

A solution   is called a Pareto optimal solution if there is no other solution     such 

that        A Pareto optimal solution is also called a nondominated solution [29] or an efficient 

solution. The set of all the Pareto solutions in   is called the Pareto set and its image in the 

objective space (see Figure 1.1) is called the Pareto front. 

The Pareto front represents the trade-offs between the different objectives, and any 

solution that is not on the Pareto front can be improved in at least one objective without making 

any of the other objectives worse [46]. 

The concept of an efficient solution for multiobjective optimization is not simple. It has a 

close connection to the decision-makers' attitudes and preferences. The idea is that an efficient 

solution (nondominated, or noninferior) must respect the domination structure of the decision 

maker, to help the decision maker in tradeoff analysis, the multiobjective optimization must 

select an acceptable solution [47]. 

  

1.5.1  What is Pareto front? [20] 

In multi-objective optimization, a Pareto front is the image of the Pareto optimal set under 

the objective functions that represents the trade-offs between different objectives, where no 

solution can be improved in one objective without degrading another objective [48], [49].  

In other words, a point on the Pareto front is the best possible solution given the trade-offs 

between the different objectives. The Pareto front is named after Vilfredo Pareto, an Italian 

economist who first described the concept of Pareto efficiency. 
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The concept of Pareto front can be visualized in a Pareto chart, which is a scatter plot of 

the solutions in the objective space. Each point on the chart represents a different solution, and 

the Pareto front is the set of points that are not dominated by any other point. 

In a Pareto optimization problem, the goal is to find the Pareto front, or a good 

approximation of it. There are various methods to find Pareto front like evolutionary algorithms 

and gradient descent. 

Pareto front is used in different fields like engineering, finance, game theory and so on, 

when we have multiple objectives that are in conflict with each other and we need to find trade-

offs between them [20]. 

In practice, when working with multi-objective optimization problems, the Pareto front is 

often approximated using a set of solutions obtained through numerical methods [30], [50]. 

The true Pareto front is not always known, and the approximate Pareto front can be used 

instead. The approximate Pareto front can be used as a benchmark to evaluate the performance of 

different optimization algorithms and to compare different solutions to a problem [51], [52]. 

 

1.6 Methods of MOO 

The solution methods of MOO problems can essentially be divided into two groups: (1) 

the Pareto methods and (2) the scalarization methods [53]. The Pareto and scalarization methods 

are different. In the Pareto   methods the performance indicators are treated separately. These 

methods produce a set of compromise solutions (trade-offs) that can be displayed in the form of 

Pareto Optimal Front (POF). On the other hand, the scalarization methods use a performance 

indicators component that forms a scalar function which is incorporated in the fitness function 

[54], [8]. The following section will explain both methods. 

 

1.6.1 Pareto Method 

In the MOO, there is a multi-variable space of the objective function vectors and the 

decision variable space of the solution vectors. For every solution   in the decision variable space 

there is a corresponding point in the objective function space [39].  
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The idea of dominance is used to distinguish between dominated and non-dominated 

solutions, and the Pareto technique maintains the solution vectors independent of one another 

throughout optimization. The dominating solutions and best values on the Pareto front in MOO 

are then obtained to the minimization or maximization problem. This scenario is known as the 

Pareto optimization . The mapping between the solution vector and the objective function vector 

can be seen in Figure 1.1 [54]. 

  

 

Figure 1.1  Mapping solution space with objective space [54]. 

 

1.6.2  Scalarization Method 

The scalarization method makes the multi-objective function create a single solution and 

the weight is determined before the optimization process. The scalarization method incorporates 

multi-objective functions into one scalar fitness function. 

                                      (1.2) 

 

1.7 Diversity and Convergence 

One of the objectives of MOO is to find solutions that are as close to the Pareto-optimal 

front as possible, and the other is to find solutions that are as diverse as possible within the 

achieved non-dominated front. These two objectives are at odds with one another in several 
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respects. Referring to Figure 1.2, the first aim needs searching towards the Pareto-optimal region, 

whereas the second goal needs searching along the Pareto-optimal front [55]. 

In our work we have used these algorithms: DSC [41], [12] and DSDSC [56], because 

they generate random solutions in each iteration [12]. 

 

 

 

Figure 1. 2 The aspect of MOEA performance metrics: diversity and convergence [55] 

  

1.8 Advanced Optimization Techniques 

The Nested Partitions NP technique, another metaheuristic for combinatorial optimization 

that is easily applied to simulation optimization issues, is introduced in [57]. The primary concept 

behind this approach is to carefully divide the feasible region into sub-regions, assess each 

region's potential, and then concentrate the computing effort on the most promising region. Each 

partition in this procedure is nested within the last partition in an iterative way [57], [12]. The NP 

method's computing efficiency primarily depends on the partitioning, which, if done in a way that 

groups fitting solutions together, can quickly arrive at a near-optimal solution [58]. 

𝑓  
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Deterministic and metaheuristic algorithms can be used to perform global optimization; 

for further information, see [59]. For a vast class of optimization problems where deterministic 

algorithms are not appropriate, metaheuristic approaches are helpful (for example, functions with 

a large number of local extrema). 

Numerous function evaluations are needed for metaheuristics. They are often 

characterized as population-based stochastic search routines, that ensure a high possibility of 

escaping the local optimal solutions when compared to gradient-based and direct search 

algorithms [60]. 

The following are the population-based metaheuristics' techniques [15], [61]: 

1. Evolutionary computation, including genetic algorithms, evolutionary programming, and 

evolutionary strategies. 

2.  Swarm intelligence: artificial immune systems, Bacterial Foraging Optimization (BFO), 

Artificial Bee Colony (ABC), Ant Colony Optimization (ACO), Particle Swarm 

Optimization (PSO), and biogeography-based optimization. 

3.  Evolutionary Algorithms (EA), including scatter search, path relinking, Differential 

Evolution (DE), coevolutionary algorithms, and cultural algorithms. 

 

1.9 Single Objective Optimization 

A Single-Objective Optimization (SOO) problem's objective function could have many 

global optimal points. For instance, there are 18 optimum solutions to the Shubert problem, but 

any of the solutions that the algorithm finds will satisfy the decision maker. Single-objective 

global optimization is the name given to this kind of optimization [12]. 

For instance, in the Traveling Salesman Problem (TSP), the objective is to determine the 

shortest route that allows us to visit each city just once before returning to the starting point. The 

goal of this task is to reduce the tour's duration [39], [62]. 

 

1.10 Genetic Algorithm 

The heuristic search methods known as Genetic Algorithms (GA) are based on the 

process of natural evolution. They have found applications in generating useful solutions for 



Aisha Younus                                            New algorithms for multi-objective optimization …Chapter 1 

 27 

 

problems involving optimization and search. The foundation of GA is natural selection modeling, 

which does not require the computation of any secondary functions like derivatives. The 

following are some benefits of GA that make it more effective in solving optimization problems:  

(a) The likelihood of local minimum trapping is reduced. 

(b) Moving from one point to another requires less computational effort until reaching to 

the solution. 

(c) Evaluation of the fitness of each string guides the search.  

One advantage of applying GA techniques is that they typically result in globally optimal 

solutions [2], [12]. 

In 1960s, "Evolutionary computing" was introduced by I. Rechenberg in his work 

“Evolution strategies”, and was further developed by other researchers. Genetic Algorithms 

(GAs) were discovered by John Holland who suggested this idea in his book “Adaptation in 

natural and artificial systems” in 1975 [63]. Holland suggested GA as a heuristic method based 

on “survival of the fittest”. GA proved to be a useful tool for search and optimization problems 

[64]. 

Genetic algorithms have long been used to solve problems. J. H. Holland's innovative 

work in the 1970s made a substantial contribution to applications in science and engineering [65]. 

 

1.10.1 Genetic Operators 

In a typical GA, there are typically three operators [44]. The first is the selection operator, 

which creates a single copy or multiple copies of individuals of the population. Individuals that 

are physically fit are more likely to be picked; otherwise, they are removed from the solution 

pool. The next operator is recombination operator, also referred to as the "crossover" operator, 

where from the generation two individuals are chosen for a crossover. There are two 

complimentary uses for the crossover operator. First, it provides new points for farther testing 

within the hyperplanes already existent in the population [12], [66].  Furthermore, crossover adds 

members of new hyperplanes to the population that neither of the parent structures had previously 

included. As a result, there is a far higher chance of having offspring who perform better. 

"Mutation" is the name of the third operator. By randomly flipping a bit in a population of 

strings, this operator serves as a background operator and is utilized to explore some of the 
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previously unexplored points in the search space. Because frequent usage of this operator would 

result in a totally random search, it typically has a very low likelihood of activation [66]. 

A genetic search begins with an initial population that is created at random and in which 

each member is examined using a fitness function. Individuals in this generation and the ones 

after it are replicated or removed through selection based on how fit they are. Applying GA 

operators results in subsequent generations. This procedure is planned to produce a generation of 

high-achieving individuals [66]. 

 

1.11 Thesis Contributions and Overview 

This thesis contributes to give new multi-objective optimization algorithms, where the 

main idea is to use new optimization algorithms (DSC and DSDSC) in multi-objective 

optimization instead of GA, and comparing with NSGA-II.    

Then we use the other two new hybrid multi-objective optimization algorithms that 

combine Non-dominated Sorting Dissimilarity and Similarity of Chromosomes (NSDSC) with 

NSGA-II, also apply a big population on a hybrid algorithm, Then we compare the results with 

 NSGA-II. 

Finally, a new multi-objective algorithm using multi-tasking with NSGA-II is proposed. 

 

1.12 Computing running time 

Briefly, the run time was computed and compared between our new algorithms with NSGA-

II on 14 tested multi-objective functions, our algorithms have shown superiority over NSGA-II, 

except for some functions, for which our algorithms have not found a solution, especially for the 

problems that have involved constraints.  

 

1.13 Structure of the Thesis 

The thesis is organized as follows: 
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Chapter 2: The literature review of multi-objective optimization approaches, NSGA-II, 

and initial population effects. 

Chapter 3: Presentation of two new multi-objective algorithms: NSDSC and NS-

DSDSC. 

Chapter 4: Presentation of two new hybrid multi-objective algorithms: NSDSC with 

NSGA-II and the application of a big population on NSDSC with NSGA-II. 

Chapter 5: A new multi-objective algorithm using multi-tasking with NSGA-II. 

Chapter 6: Conclusions. 

Appendix A: Presentation of all test functions. 
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CHAPTER TWO: Literature Review 

 

2.1 Introduction  

Numerous methods based on Multi-Objective Optimization (MOO) techniques 

have been put forth in recent years to process MOO problems. 

In this literature review, we focus on the following topics: NSGA-II, Non-

dominated Sorting Particle Swarm Optimization (NSPSO), crowded distance, multi-

objective hybrid algorithm, and initial population.  

 

2.2 Literature review of NSGA  

The authors of [38] present “A Fast and Elitist Multiobjective Genetic Algorithm 

(NSGA-II)”, where they mention the main criticisms of the NSGA approach have been as 

follows:  

1) Nondominated sorting has a high computational complexity, with the currently 

employed approach having an        complexity (where   is the number of 

objectives and   is the population size). For large population sizes, this renders 

NSGA computationally expensive. This significant complexity results from the 

difficulty of the nondominated sorting process in each generation.  

2)  Lack of elitism: Recent findings indicate that elitism can greatly speed up the 

GA's performance, which also can assist to prevent the loss of good solutions 

once they are discovered. 

3) Specification of the sharing parameter is required: The idea of sharing has been 

the mainstay of traditional systems for ensuring diversity in a population in 

order to produce a wide variety of similar solutions. The biggest issue with 

sharing is that it needs a sharing parameter (      ) to be specified. Despite 

some efforts to dynamically size the sharing parameter [24] [14], it would be 

preferable to have a parameter-free diversity-preservation system. 
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The authors of [38] have found that NSGA-II outperforms two other 

contemporary MOEAs: Pareto-Archived Evolution Strategy (PAES) and strength-Pareto 

EA (SPEA) in terms of finding a diverse set of solutions and in converging near the true 

Pareto-optimal set. 

In [67] the authors have used NSGA-II and Non-dominated Sorting Particle 

Swarm Optimization Algorithm (NSPSO) for efficient utilization of resources and 

execution of the tasks, these algorithms were implemented intending to schedule 

independent tasks in a Distributed Heterogeneous Computing Systems (DHCS) 

environment of optimizing makespan and flowtime simultaneously, where “makespan 

and flowtime refers to the response time in execution of the user’s request” [67], from the 

results obtained, it is seen that NSGA-II provides a set of good quality solutions that offer 

more flexibility to users to estimate their preferences and choose a desired schedule.  

The results also verify that genetic operators used in NSGA-II help to evolve 

better solutions rather than controlling the movement of the particles in NSPSO for 

evolving better solutions. Though PSO is simpler to implement it is found that NSGA-II 

works well in the case of multi-objective problems. A sample of their work of [67] is 

shown in the Figure 2.1. 

 

Figure 2. 1 Comparison NSGA-II and NSPSO [67] 
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2.3 Hybrid algorithms 

 

2. 3. 1 Hybrid algorithms for single-objective optimization  

A hybrid evolutionary algorithm made up of Genetic Algorithm (GA), heuristics, 

and Ant Colony Optimization (ACO) has been presented by G. P. Rajappa in [68]. The 

Split Delivery Vehicle Routing Problem (SDVRP) was tested and a solution was 

proposed. In a brief, the hybrid algorithm creates and evaluates a large initial population 

(1000) using ACO, then selects 500 of the best routes and inserts them into the modified 

genetic algorithm to create an initial generation. For the datasets included in the author's 

analysis, the hybrid GA demonstrates the ability to deliver better outcomes while 

requiring less computing time. 

In Chapter 4 of our thesis, we use a similar concept of a large initial population. 

The initial large population is evaluated by NSDSC; then, the best solutions are taken 

from it and inserted as the first generation to the NSGA-II algorithm. For each function 

that is tested, the initial population starts with 1000 elements, then we take best 200 of 

them. 

According to the authors of [69], the global path planning is a problem in the area 

of mobile robots and it is difficult due to its complexity and nature as a nondeterministic 

polynomial-time hard problem (NP-hard). They proposed a novel hybrid optimization 

technique to address this issue by first inventing the PSO and DE algorithms, then 

combining them. The hybrid algorithm's evolved PSO, known as Nonlinear Time-

Varying PSO (NTVPSO), updates the positions of the particles' velocities in an effort to 

prevent stagnation. 

A Hybrid Biogeography Based and Artificial Bee Colony algorithm (HBBABC) 

is created in [70] by combining the two well-known algorithms: Biogeography Based 

Optimization (BBO) and Artificial Bee Colony (ABC). It makes use of the ABC 

exploration and BBO exploitation functionalities. The performance of this hybrid 

approach, which takes into consideration discrete design variables and five engineering 

design optimization issues, was tested on 14 benchmark problems. The Mean Solution, 

Best Solution, T-test, Success Rate, and other criteria are also taken into consideration. 
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Using the same criterion as above, experimental results show that HBBABC performs 

better overall than BBO and ABC. 

The author of  [71] suggests a new real-coded evolutionary algorithm to use for a 

four-bar linkage's path synthesis. Differential Evolution (DE) and Real-valued Genetic 

Algorithm (RGA) are combined in the suggested novel evolutionary algorithm. The "GA-

DE hybrid algorithm" is the name of this hybrid algorithm. The author replaces the 

crossover operation in the RGA with differential vector perturbation, using the best 

individual or a few good individuals as the base vectors. This is the sole difference 

between the proposed technique and RGA. Four cases were used to evaluate the 

procedure, and the results showed that three of the cases had more precise solutions than 

those found using previous evolutionary techniques. 

 

2. 3. 2 Hybrid algorithms for multi-objective optimization 

 In [72] a Hybrid Algorithm combining the multi-objective Artificial Bee Colony 

and Differential Evolution (HABC-DE) is tested on two data sets. For finding the best 

collection of criteria to increase the value of software release while keeping expenses 

within the budget is the goal of the process of selecting software requirements. It is 

categorized as a non-deterministic polynomial (NP) hard problem and is known as the 

next release problem (NRP) with constrained multi-objective version.  

In [73] the authors suggest a multi-objective optimization process coupled with 

the NSGA-II algorithm and entropy weighted method called Technique for Order 

Preference by Similarity to Ideal Solution (TOPSIS) to lightweight design of the dump 

truck carriage. A multi-objective lightweight optimization of the dump truck carriage 

using the NSGA-II method and the Kriging surrogate model was carried out. The best 

dump truck design was then chosen from among Pareto options using the entropy weight 

TOPSIS approach. The findings demonstrate that the optimized dump truck carriage 

achieves a noteworthy mass reduction of 81 kg, as much as 3.7% compared with the 

original carriage. 
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In [74] the authors suggest a hybrid, multi-objective optimization technique for 

designing Permanent Magnet (PM) traction motors that allows for global optimal 

tracking. The new methodology relies on the Artificial Bee Colony (ABC) technique, 

Strength Pareto Evolutionary Algorithm (SPEA2), and Differential Evolution (DE) 

strategy, which are used to ensure quick and consistent convergence to the ideal Pareto 

front. Through both relevant test functions and an application case involving an unequal 

teeth surface mounted permanent magnet wheel motor design, the effectiveness of the 

generated approach is compared to other well-established and potent algorithms from the 

literature. 

In order to balance network lifetime and coverage, in [75] the authors take the 

coverage optimization problem in Wireless Sensor Networks (WSN) into consideration. 

These include decreasing energy use, increasing coverage rate, and increasing energy 

consumption equilibrium. Hybrid-MOEA/D-I and Hybrid-MOEA/D-II, two upgraded 

hybrid multi-objective evolutionary algorithms, have been suggested. In order to 

efficiently optimize sub-problems of the multi-objective optimization problem in WSN, 

Hybrid-MOEA/D-I, which is based on the well-known multi-objective evolutionary 

algorithm based on decomposition (MOEA/D), combines a Genetic Algorithm (GA) and 

a Differential Evolution (DE) algorithm. 

 

2.4 Evolutionary Algorithms  

Including traditional GAs, evolutionary algorithms (EAs) are a big class of 

optimization techniques that draw their inspiration from the process of natural evolution. 

According to Eiben and Smith [76], “there are many different variants of evolutionary 

algorithms. The common underlying idea behind all these techniques is the same: given a 

population of individuals within some environment that has limited resources, 

competition for those resources causes natural selection (survival of the fittest)”.  

The following steps essentially summarize how different EA implementations 

(such as genetic algorithms, genetic programming, and evolutionary strategies) work: 

1. Initialize a population randomly and evaluate each candidate; 
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2. Select parents; 

3. Recombine pairs of parents; 

4. Mutate the resulting offspring; 

5. Evaluate each new candidate; 

6. Select individuals for the next generation; 

7. Repeat from Step 2 until a stopping criterion is satisfied. 

Our algorithms presented in this thesis can be considered as evolutionary algorithms.  

 

2.5 Performance measures of MOO [77] 

In multi-objective optimization, there are two goals: convergence to the Pareto-

optimal set and maintenance of diversity in solutions of the Pareto-optimal set [38]. 

There are many metrics that can be used to evaluate the quality of a set of 

solutions in multi-objective optimization. These metrics are often used to compare 

different Pareto fronts or to compare a Pareto front to an ideal solution. Some of the 

metrics are: 

1. Generational Distance (GD). The GD indicator, introduced by Van Veldhuizen 

and Lamont in 1998 [78], measures the quadratic mean of the Euclidean distances of 

solutions in the given set to the closest point on the Pareto front. For a given solution set 

              , the authors define 

        
 

 
(∑ (         )

  
   )

   

, 

where           is the Euclidean distance of    to the true Pareto front PF. To compute 

          in practice, usually, a finite reference set R is used that well represents the 

Pareto front; then 

                            

In [79], GD measures the quadratic mean of the Euclidean distances of solutions 

in the given set to the closest point on the Pareto front, while in [80], GD is defined as the 

arithmetic mean of these distances. 
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2. Error Ratio (ER). The ER indicator, introduced by Van Veldhuizen in 1999 

[81] considers the proportion of solutions in some set A that are not Pareto optimal. It is 

defined by the formula 

       
∑        

 
, 

where N is the number of elements of the solution set A, and 

      {
          
            

 

3. Inverted Generational Distance (IGD). The IGD, first used by Coello and 

Sierra (2004) [82] is amongst the most commonly used indicators. It is an inversion of the 

GD indicator because it measures the distance from the Pareto front to the solution set. 

Given a solution set A and a reference set                  , we have 

          
 

 
∑                

      

 In [83], the IGD metric was used as a measure of convergence in evolutionary 

algorithms for multi-objective optimization. 

4. Hyper Volume (HV). This metric measures the volume of the objective space 

that is dominated by the solutions on a Pareto front. It is often used as a measure of the 

quality of a Pareto front, with larger values indicating a better quality Pareto front [84], 

[85]. 

Let’s denote the reference point as                where   is the number of 

objectives, and    is the i-th component of the reference point.                is a set 

of non-dominated solutions, where   is the number of solutions. The HV metric is 

calculated as:   

        ∫ ∫  ∫        
  

  

  

  

  

  

                   

where                 is a function that calculates the contribution of the set of  

solutions   to the hyper volume at points             .  

5. Spacing metric. This metric measures the average distance between the 

solutions on a Pareto front.  It is often used as a measure of diversity in evolutionary 
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algorithms for multi-objective optimization [86]. The following formula explains the 

spacing metric. 

     =√
 

| |  
∑   ̅      | |

    

where                     
‖           ‖ 

 is the    distance between a point      

and the closest point of the Pareto front approximation, and  ̅ the mean of the   . 

where F is a vector objective function and |S| is the number of points in a Pareto set 

approximation S. 

6. Spread metric. This metric measures the spread of the solutions on a Pareto 

front in the objective space. It is often used as a measure of the quality of a Pareto front, 

with larger values indicating a better quality Pareto front [87]. 

       √
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where spread is the spread metric,   is the number of solutions on the Pareto front,    is 

the Eculidean distance between solution   and its nearest neighbor on the Pareto front,  ̅ 

is the average of all the   . 

7. DeltaP metric. This metric measures the difference between solutions on the 

Pareto front and solutions obtained by the algorithm. It is often used as a measure of 

convergence in evolutionary algorithms for multi-objective optimization [88]. We define 

new indicator    as follows. 

Let                             be finite and non-empty sets. Then 

we define         by 

                                 

      ((
 

 
 ∑             

   )
 

 ⁄
 (

 

 
 ∑             

   )
 

 ⁄
 ) [89] 

In general, a smaller value of the DeltaP metric is better. The DeltaP metric is a 

measure of the difference in performance between two algorithms or methods and a 
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smaller value indicates that the difference is smaller and the algorithms or methods are 

more similar in performance. However, the specific meaning of "better" can vary 

depending on the context in which the metric is used. It is always depending on the 

problem to be solved and the setting of a threshold [90]. 

These are just a few of the many metrics that can be used to evaluate the quality 

of a set of solutions in multi-objective optimization. The choice of metric will depend on 

the specific goals and characteristics of the optimization problem. 

 

2.7 Initial population effects  

The results of preliminary studies show that a well-distributed initial population 

really speeds up the convergence to the correct Pareto front [91], [92], [93]. 

In our algorithms, a portion of the population is regenerated randomly after each 

cycle. So, this feature speeds up the convergence to the correct Pareto front, as we 

observed in the results in chapter four and five . 

Most of Multi-Objective Evolutionary Algorithms (MOEA) are based on random 

generation of initial population [94]. This random approach frequently results in an initial 

population that only contains impractical solutions. Consequently, a MOEA's job is to 

direct the search to the feasible region as well as to converge towards the Pareto-optimal 

front. The authors of [94] present a novel approach called Pareto-Front-Arithmetics 

(PFA), The main idea of PFA is: The MOP is divided into multiple sub-problems each of 

which is independently optimized using a common optimization technique, where the 

results of the sub-optimizations are merged in the fast PFA step. The obtained non-

dominant solutions are used as initial solutions to the global optimization problem. The 

proposed methodology has the benefit of being adaptable to any MOEA currently in use. 

In our work, we have used a big initial population in one algorithm (first big 

population with Hybrid NSDSC with NSGA-II) in Chapter 4. It shows better results 

comparing with other our algorithms and also with NSGA-II on tested functions.   
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2.8 Modified NSGA-II                  

In [95] the authors suggested to modify NSGA-II to solve hub covering problems. 

Such models are applied in martial transportation networks, message delivery in 

telecommunication systems and air transport systems. To solve the proposed model, a 

modified version of NSGA-II was developed in which new crossover and mutation  

operators were introduced to adapt with structure of the considered problem. Hub 

covering problems, as location-allocation problems, consist of two sub-problems namely 

Hub Set Covering Problem (HSCP) and Hub Maximal Covering Problem (HMCP). The 

modified NSGA-II deviates from the standard one in three ways:  

(1) Enhanced operators are created to adapt to the problem.  

(2) An immigration operator is added for a better search in the solution space.  

(3) A new mechanism is created for increasing the population. 

The results of modified NSGA-II were better than original ones for two problems 

in terms of Quality Metric (QM), Spacing Metric (SM), Mean Ideal Distance (MID), see 

[95]. 

In [96] the authors suggested a Modified Non-Dominated Sorting Genetic 

Algorithm-II (MNSGA-II). It was applied to the multi-objective reactive power planning 

problem by incorporating the concept of Dynamic Crowding Distance (DCD) in NSGA-

II algorithm. It was found from the simulation results that MNSGA-II performed better 

than NSGA-II in general. 
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CHAPTER THREE: The NSDSC and NS-DSDSC Algorithms 

 

3.1 Introduction  

In this chapter we present a description of NSGA-II, also, we propose two 

modifications of NSGA-II: the first one, by using the Dissimilarity and Similarity of 

Chromosomes (DSC) algorithm as optimization  algorithm instead of GA, then, the 

second one by using the Dynamic Schema Dissimilarity and Similarity of Chromosomes 

(DSDSC) algorithm as optimization algorithm instead of GA. These two algorithms: 

Non-dominated Sorting Dissimilarity and Similarity of Chromosomes (NSDSC) and 

Non-dominated Sorting Dynamic Schema Dissimilarity and Similarity of Chromosomes 

(NS-DSDSC) were examined on 14 multi-objective test problems. 

 

3.2 Description of NSGA-II  

In [16] the author describes the NSGA-II algorithm in details, this algorithm is a 

new version of NSGA, where the main difference is that NSGA uses two populations: 

one for parents and one for offspring [22]. NSGA-II combines these populations into 

one, see Figure 3.1. Also, NSGA-II includes a crowding distance mechanism for 

selecting solutions in crowded regions of the Pareto front. 

 

3. 2. 1 Non-dominated Sorting Genetic Algorithm (NSGA) 

Many old techniques scalarize the objective vector into a single objective in an 

attempt to handle multiobjective optimization issues. The achieved solution in those 

circumstances is very dependent on the weight vector employed during the scalarization 

process and necessitates that the user be aware of the problem. In addition, designers 

may be more interested in a group of Pareto-optimal points rather than a single point 

when handling multiobjective issues. Considering that GAs operate on populations of 

points, it makes sense to use GAs to multiobjective optimization problems in order to 

simultaneously capture several solutions [22]. 
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The NSGA differs from the Simple Genetic Algorithm (SGA) mainly in the way 

the selection operator works [22]. The crossover and mutation operators remain as 

usual. Before the selection is performed, the population is ranked on the basis of an   

individual’s nondomination. The non-dominated individuals present in the population 

are first identified from the current population. The idea behind the nondominated 

sorting procedure is that a ranking selection method is used to emphasize good points 

and a niche method is used to maintain stable subpopulations of good points, where, the 

niche method in Genetic Algorithm maintains stable subpopulations of good points by 

sharing populations, enhancing diversity, and optimizing multimodal functions for 

faster and more optimal solutions [97].  

NSGA originally focused on binary-coded genetic representations, but it can be 

adapted for real-valued representations and other encoding schemes. The NSGA uses a 

unique non-dominated sorting approach to classify solutions into multiple Pareto fronts. 

This sorting technique enables the algorithm to distinguish between solutions that are 

superior and inferior concerning multiple objectives. Also, NSGA was invented by 

Srinivas and Deb (1995) to overcome of the weakness of a Vector Evaluated GA 

(VEGA) (Schaffer, 1984) [22].   

 

3. 2. 2 Non-dominated Sorting Genetic Algorithm II (NSGA-II)  

The authors of [38] suggested a crowded-comparison strategy, this new strategy 

called Crowding Distance (CD) in NSGA-II algorithm, so the difference between NSGA 

and NSGA-II [98], [21], is that the NSGA-II involves the principle of “the crowded 

sorting of the solutions”, also, the last front which could not be accommodated fully is 

sorted in the descending order of their crowding distance values and points from the top 

of the ordered list are chosen, the mechanism of crowding distance is described in 

Section  3.2.2.1.     
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The main steps of NSGA-II can be summarized as follows:  

Step 1: Create an offspring population    from the parent population   , then 

combine the    and    populations:          , perform a non-

dominated sorting to    and find different fronts   . 

Step 2: Set the new population        and set      Until |    |  |  |    

(where N is the size of   ), perform                 and 

increase   by 1.  

Step 3: Include the most widely spread solutions    |    |  of    in      

using the crowding distance value. 

Step 4: Create an offspring population       from       by using the crowded 

tournament selection, crossover and mutation operators. 

 For more details, in any generation  , the offspring population    is first created 

by using the parent population     and the usual genetic operators. Next, the two 

populations are combined together to form a new population    of size 2N. Then, the 

population    is classified into different non-domination classes, see Figure 3.1 [16]. 

Thereafter, the new population is filled by points of different non-domination 

fronts, one at a time. The filling starts with the first non-domination front (of class one) 

and continues with points of the second non-domination front, and so on. Since the 

overall population size of    is 2N, not all fronts can be accommodated in N slots 

available for the new population. All fronts which could not be accommodated are 

deleted [16]. The pseudocode of the NSGA-II is shown in Algorithm 3.1 [99]. 

The NSGA-II algorithm is a multi-objective optimization algorithm that is 

commonly used in various fields such as engineering and computer science . 
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Figure 3. 1 Schematic of the NSGA-II procedure [16]. 

Procedure NSGA-II  

Create random solutions to build an initial population set; 

while stop Criterion Not Satisfied() do 

for               do         % N is the size of population 

Select two parents    and    ;      % from the current population   

Execute crossover of   ,    and generate offspring   and   ; 

Mutate    and   ; 

Evaluate    and   and insert them in the offspring set; 

end for 

Create a union set from population and offspring and clear population (old 

solutions); 

Build Pareto fronts     from union based on the dominance rule; 

Set the current front as       ;    % the first non-dominated front 

while length of              do 

Sort solutions from the current front by Crowding Distance; 

for each solution in the ordered front do 

if the length of               then 

Include the solution in population; 

end if 

end for 

Go to the next Pareto front; 

end while 

end while 

end procedure 

Algorithm 3. 1 The pseudo-code of the NSGA-II [99] 
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Sorting   

 

Non-dominated 

Sorting 
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NSGA-II uses non-dominated sorting to partition the population into different 

Pareto fronts. Solutions on the first front (pfs[0]) are non-dominated by any other solution 

in the population, while solutions on the second front (pfs[1]) are non-dominated by all 

solutions except those on the first front, and so on. 

To compute the crowding distance of a solution, one typically looks at the 

distances to its nearest neighbors in the objective space. Solutions that are farther apart 

from their nearest neighbors are considered to have a higher crowding distance and are 

given more weight in the optimization process. The exact definition of crowding distance 

and the way it is used can vary depending on the specific algorithm and application [16]. 

 

3. 2. 2. 1 Crowding Distance 

NSGA-II uses Crowding Distance (CD) measure to remove excess individuals. 

The individuals having lower values of CD are preferred to individuals with higher 

values of CD in removal process. “In MOEAs, the horizontal diversity of Pareto front is 

very important. The horizontal diversity is often realized by removing excess individuals 

in the non-dominated set (NDS) when the number of non-dominated solutions exceeds 

population size” [96]. 

The crowding distance     of point    is a measure of the objective space around 

   which is not occupied by any other solution in the population. Here, we simply 

calculate this quantity     by estimating the perimeter of the cuboid formed by using the 

nearest neighbors in the objective space as the vertices [21], see Figure 3.2. 

The crowded tournament selection is based on ranking and distance. In other 

words, if a solution    has a better rank than      , we select    . If the ranks are the same 

but     >       , we select    based on its crowding distance. “we prefer the solution with 

the lower (better) rank. Otherwise, if both solutions belong to the same front, then we 

prefer the solution that is located in a lesser crowded region” [38]. 
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 Figure 3. 2 The crowding distance calculation 

Crowding distance is a measure of the "crowding" of solutions on the Pareto 

front. It is often used in evolutionary algorithms for multi-objective optimization to 

ensure that the diversity of solutions is maintained [100]. The idea is that solutions that 

are too close together in the objective space may be less useful for exploration, because 

they do not represent a significant improvement over the existing solutions. On the other 

hand, solutions that are farther apart may represent a larger improvement and should be 

given more weight in the optimization process [14]. 

 

3.3 Development of NSGA-II 

The authors of [96] introduced new modification of NSGA-II called Dynamic 

Crowding Distance (DCD), where one individual with the lowest DCD value is removed 

every time and DCD is recalculated for the remaining individuals. In [96] the authors 

assumed that the population size is   and the nondominated set at t-th generation is       

and its size is  , where   is the population size of offspring     , If      , a DCD 

technique is based on removing the individual which has the lowest DCD value in the 

     to eliminate redundant      individuals from population.  

In  [95] the authors  have proposed  a new process called immigrants that has been 

added to the NSGA-II algorithm, this process depends on the results of crossover and 

mutation in the original algorithm. The idea is to introduce new individuals into  

population so that there will be diversity in society, only the successful offspring will be 

added to population, and the others will be replaced with immigrants. 

i
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3.4 Constraint Overview 

In optimization, a constraint is a condition that must be satisfied by the solution to 

a problem. Constraints can be used to limit the possible solutions to a problem and ensure 

that the solution meets certain requirements or criteria [101], [14]. 

There are two types of constraints: equality constraints and inequality constraints. 

An equality constraint is a condition that must be satisfied exactly, such as           . 

An inequality constraint is a condition that must be satisfied within a certain tolerance or 

range. It allows for some flexibility in the optimization problem, such as            

[102]. In optimization algorithms, constraints are often represented as a set of inequalities 

or equalities that must be satisfied by the solution. The optimization algorithm then 

attempts to find a solution that meets all of the constraints while also minimizing or 

maximizing some objective function [102]. 

Constraints can be used to represent real-world conditions that must be satisfied in 

order for a solution to be feasible. For example, in a problem involving the design of a 

structure, constraints might be used to ensure that the structure can support the required 

load, that it meets certain safety requirements, and that it is built within a certain budget 

[103]. A constraint may represent a limit on a certain resource or on a certain physical 

phenomenon, for example, stress limitation, current or voltage restriction, etc. We should 

always identify the constraints associated with the optimization problem [102]. 

The authors of [104] have proposed a new constraint handling mechanism 

called Constrained Non-dominated Sorting (CNS) for constrained multi-objective 

optimization. In CNS, each individual of a population is assigned a constrained non-

dominated rank (CNR) which is calculated according to the constraint violation degree 

and Pareto rank of each individual. 

 

3. 5 The NSDSC algorithm   

In our research we use the same strategy as in NSGA-II, but instead of crossover 

and mutation operators in Genetic Algorithm (GA), we use the dissimilarity and 

similarity operators, that are taken from [41], where they are applied in the DSC 
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algorithm (Dissimilarity and Similarity of Chromosomes). In this algorithm, the 

population is sorted based on the fitness function, then in the first and second quarters of 

population, dissimilarity and similarity operators (see Tables 3.1 and 3.2) are applied on 

chromosomes, then the remaining half of generation is regenerated randomly in each 

iteration. Figure 3.3 shows the flowchart of DSC algorithm, for more details  see [41].  

We summarize the idea of dissimilarity and similarity operators in the followoing 

points respectively.  

1. The dissimilarity operator (applied in the first quarter of population): for each 

two sequential chromosomes A and B, if the two bits are equal, put a star (*) 

in the second chromosome (B); otherwise leave this bit without change in the 

second chromosome. Then put randomly 0 or 1 in the bits with stars (*). 

Compare this new second chromosome with the third one, and so on, see 

Table 3.1. 

2. The similarity operator (applied in the second quarter of population): for each 

two sequential  chromosomes A and B, if the two bits are not equal, put a star 

(*) in the second chromosome (B); otherwise leave this bit without change in 

the second chromosome. Then put randomly 0 or 1 in the bits with stars (*). 

Compare this new second chromosome with the third one, and so on, see 

Table 3.2. 

Table 3. 1 The dissimilarity operator [41]  

Before change: example for the first quarter of chromosomes 

Chromosome A 1 1 0 0 1 0 1 1 

Chromosome B 1 0 1 1 0 0 0 1 

 

Chromosome A 1 1 0 0 1 0 1 1 

Chromosome B * 0 1 1 0 * 0 * 

After change: put randomly 0 or 1 in (*) bits 

Chromosome A 1 1 0 0 1 0 1 1 

Chromosome B 1 0 1 1 0 0 0 0 
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 Table 3. 2 The similarity operator [41]  

Before change: example for second quarter of chromosomes 

Chromosome A 1 1 0 0 1 0 1 1 

Chromosome B 1 0 1 1 0 0 0 1 

 

Chromosome A 1 1 0 0 1 0 1 1 

Chromosome B 1 * * * * 0 * 1 

After change: put randomly 0 or 1 in (*) bits 

 

 

Briefly, the suggested algorithm called Non-dominated Sorting Dissimilarity and 

Similarity of Chromosomes (NSDSC) works as follows: in step one it initializes a parent 

population    of N solutions, then applies a part of the DSC algorithm (dissimilarity and 

similarity operators) to generate an offspring population   , then performs non-

dominated sorting of the entire population          to identify different fronts, then 

a crowding distance is applied to construct     . In Algorithm 3.2, we present the 

pseudocode of NSDSC. 

 

Procedure NSDSC  

Create random solutions to build an initial two population sets     of size  ; 

Sort P by nondomination and build Pareto fronts; 

while stop Criterion Not Satisfied() do 

Copy C times one chromosome randomly chosen from the first front and 

put it in the first half of   randomly;     % where C is equal to       

for               do        % s is the index of a chromosome 

if the first quarter of population P then  

    Apply the dissimilarity operator on chromosomes    ,       

from population P and put the result in the offspring set Q;  

else if the second quarter of population P then  

     Apply the similarity operator on chromosomes     ,       from 

population P and put the result in the offspring set Q;  

else  

Generate randomly the second half of offspring set Q; 

Chromosome A 1 1 0 0 1 0 1 1 

Chromosome B 1 1 0 1 0 0 1 1 
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end for 

Create a union set           from population and offspring and clear 

population P; 

Build Pareto fronts     from union R based on the dominance rule; 

Set the current front as       ;    % the number will increase in each next 

                                                      front 

while the length of     do          % until the last chromosome 

Sort solutions from the current front by Crowding Distance; 

for each solution in the ordered front do 

if the length of     then 

Include the solution in population P; 

end if 

end for 

Go to the next Pareto front; 

end while 

end while 

end procedure  

Algorithm 3. 2 The pseudo-code of the NSDSC Algorithm 
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Figure 3.3 Flowchart of the DSC algorithm [41], [12]. 

 

Divide the population into 3 groups: G1 is  the first quarter, G2 is the second 

quarter and G3 is the second half of population. 

Evaluate and sort the population according to fitness function, copy C times the 

first solution and insert randomly between (      ). 

For the first quarter (1..M/4) of solutions (G1), apply the dissimilarity operator 

to the first and the second chromosome, then to the (new) and the third 

chromosome, and so on. 

Initialize population with    solutions representing points  𝑥    𝑥𝑛 . 

Decode chromosomes to find  𝑥    𝑥𝑛 , using the formula 

𝑥𝑖  𝑎  d     l             
𝑏 𝑎

 𝑚𝑖  
, where  𝑎 𝑏  is the range of   i . 

 

No 

Is the stopping criterion satisfied? 

For the last half of solutions (M/2+1..M) (G3), generate randomly new 

chromosomes. 

For second quarter (M/4..M/2 ) of solutions (G2), apply the similarity operator 

to the first and the second chromosome, then to the (new) second and the third 

chromosome, and so on. 

 

Print the best solution and the number of iterations. 

Yes 
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3.6 Experiment results of the NSDSC algorithm 

In this section we will show the experimental results (by using the Matlab 

software) of the NSDSC algorithm on 14 different functions, the first 9 functions in 

Appendix 1 are without constraint, then the last 5 functions have constraints.  

The Schaffer function A1 (SCH) has one variable, while the following functions: 

Binh and Korn function (BNH),  Binh and Korn function (BNH) with constraint, SRN, 

TNK, CONSTR, have 2 variables.  The Kursawe function has 3 variables. The OSY 

function has 6 variables. The two functions: Zitzler–Deb–Thiele's function A4 (ZDT4) 

and Zitzler–Deb–Thiele's function A6 (ZDT6) have 10 variables. The three functions: 

Zitzler–Deb–Thiele's function N.1 (ZDT1), Zitzler–Deb–Thiele's function A5 (ZDT2) 

and Zitzler–Deb–Thiele's function A3 (ZDT3) have 30 variables. 

The experimental results show that our suggested algorithm has good results and 

is faster than NSGA-II when the number of variables is equal to 1, 2, 3, 6, but when the 

number of variables is 10 or 30, the algorithm does not reach the optimum solutions. The 

following figures show results for all the functions, where the blue points are generated 

by the suggested algorithm (NSDSC) and the red points are generated by NSGA-II. 

In Figure 3.4 and Figure 3.5, the NSDSC algorithm shows that the most of 

solutions are grouped (in the ellipse in Figures) close to the middle solutions in Pareto 

set.   

The parameters used for the NSGA-II algorithm are set as follows: population 

size = 200, number of generations = 1000, crossover rate = 90%, mutation rate = 10%. 

While the parameters used for NSDSC algorithm are set as follows: population size = 

200, number of generations = 1000. 

 

https://en.wikipedia.org/w/index.php?title=Binh_and_Korn_function&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Binh_and_Korn_function&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Kursawe_function&action=edit&redlink=1
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Figure 3. 4 Binh and Korn function (BNH), the points inside ellipse show the density of 

solutions in the Pareto front using NSDSC. 

 

Figure 3. 5  Fonseca–Fleming function (FON), the points inside ellipse show the density 

of solutions in the Pareto front using NSDSC  

In Figures 3.6 to 3.19, we show the results of applying two algorithms (NSDSC 

and NSGA-II) on all 14 problems, red points represent the NSGA-II algorithm and blue 

points represent the NSDSC algorithm. Also, the problems A2-ZDT1, A5-ZDT2, A7-

ZDT3, A8-ZDT4, A9-ZDT6 don’t have got good results in (NSDSC). 

https://en.wikipedia.org/w/index.php?title=Binh_and_Korn_function&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Fonseca%E2%80%93Fleming_function&action=edit&redlink=1
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Figure 3.6 Binh and Korn problem using NSGA-II and NSDSC. 

 

Figure 3.7 Zitzler–Deb–Thiele's problem  A2-(ZDT1) using NSGA-II and NSDSC. 

 

Figure 3.8 Kursawe problem using NSGA-II and NSDSC. 

https://en.wikipedia.org/w/index.php?title=Binh_and_Korn_function&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Kursawe_function&action=edit&redlink=1
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Figure 3.9 Schaffer problem using NSGA-II and NSDSC. 

 

Figure 3.10 Zitzler–Deb–Thiele's  A5-(ZDT2) problem using NSGA-II and NSDSC.  

 

Figure 3. 2 Fonseca Fleming problem (FON) using NSGA-II and NSDSC.  

https://en.wikipedia.org/w/index.php?title=Fonseca%E2%80%93Fleming_function&action=edit&redlink=1
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Figure 3. 12 Zitzler–Deb–Thiele's problem A7-(ZDT3) using NSGA-II and NSDSC.  

 

Figure 3. 13 Zitzler–Deb–Thiele's problem  A8-(ZDT4) using NSGA-II and NSDSC. 

 

Figure 3. 14 Zitzler–Deb–Thiele's problem A9-(ZDT6) using NSGA-II and NSDSC. 
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Figure 3. 15 Binh and Korn problem with constraint using NSGA-II and NSDSC. 

 

Figure 3. 16 SRN problem using NSGA-II and NSDSC. 

 

Figure 3. 17 The TNK problem using NSGA-II and NSDSC. 

https://en.wikipedia.org/w/index.php?title=Binh_and_Korn_function&action=edit&redlink=1
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Figure 3. 18 the OSY problem using NSGA-II and NSDSC (green points). 

 

Figure 3. 19 The CONSTR function, using NSGA-II and NSDSC. 

In Table 3.1, we show the results of two algorithms (NSDSC, NSGA-II) in run 

time in seconds, where for the problems A1-BNH, A3-KUR, A4-SCH, A6-FON, A10-

BNH with constraint, A11-SRN, A12-TNK, A13-OSY and A14-CONSTR we have 

reached the Pareto front as an NSGA-II algorithm but superior in run time, but for some 

problems A2-ZDT1, A5-ZDT2, A7-ZDT3, A8-ZDT4 and A9-ZDT6, we have not 

reached the Pareto front, see Figures 3.6 to 3.19.   
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Table 3. 3  Comparison of NSDSC and NSGA-II in run time 

Function name 
NSDSC 

time in seconds 

NSGA-II 

time in seconds 

A1-BNH 24.1824 36.8989 

A2-ZDT1 
42.0908 

Not pass * 
48.0775 

A3-KUR 27.9392 45.3970 

A4-SCH 24.3879 40.6266 

A5-ZDT2 
40.1732 

Not pass * 
48.7190 

A6-FON 27.1879 44.0588 

A7-ZDT3 
40.7832 

Not pass * 
46.5388 

A8-ZDT4 
28.2977 

Not pass * 
42.6555 

A9-ZDT6 
30.1160 

Not pass * 
43.2656 

A10-BNH  constraint 29.1140 37.0089 

A11-SRN 25.3399 38.9880 

A12-TNK 25.1719 36.6221 

A13-OSY 125.9281 173.8189 

A14-CONSTR 26.2113 35.2914 

 

* In problems A2, A5 and A7 the NSDSC has not got the optimum solutions of 

Pareto because those problems have 30 variables, while A8 and A9 has 10 variables.  

 

3.7   The NS-DSDSC algorithm  

In this section we have introduced a new algorithm called Non-dominated Sorting 

of Dynamic Schema of chromosomes with Dissimilarity and Similarity of Chromosomes 

(NS-DSDSC), in this algorithm we used the DSDSC instead of GA to find the optimum 

solution. Figure 3.23 shows the flowchart of DSDSC algorithm, for more details see [41]. 

In the DSDSC algorithm, we divide the population into four equal parts (Q1, Q2, 

Q3, Q4); for Q1 and Q2 we apply the dissimilarity and similarity operator, respectively, 

for Q3 we apply the dynamic schema operator, and Q4 is regenerated randomly. The 

dynamic schema operator requires that the some high significant bit(s) are fixed for each 

variable   , then we put *’s on some of the remaining bits by using the similarity 
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operator. This type of schema is used to determine the area of the solution in search 

space, see Table 3.4, where    represents the number of bits for variable   ,    

represents the number of bits to be fixed (from    bits), and       represents the bits 

that have to be changed based on similarity, and so on for all    , this operator is named 

the dynamic schema operator, where     was generated randomly, and M is the number of 

chromosomes in the population.  

 

Table 3. 4 The dynamic schema operator [12]  

Before change: an example for finding schema from the first chromosome and the chromosome on position 

M/4. Here shadow bits are not destroyed. 

No. of Ch. 

      

                  

Ch1 1 1 0 0 1 0 1 0 1 0 

ChM/4 0 1 1 0 0 1 0 0 0 1 

Schema 1 1 * 0 * * 1 0 * * 

After finding the schema: put it in M/2+1…M/2+M/4 positions 

ChM/2+1 1 1 * 0 * * 1 0 * * 

ChM/2+2 1 1 * 0 * * 1 0 * * 

Ch. … 1 1 * 0 * * 1 0 * * 

Ch. … 1 1 * 0 * * 1 0 * * 

ChM/2+M/4 1 1 * 0 * * 1 0 * * 

After change: put randomly 0 or 1 in (*) bits 

ChM/2+1 1 1 1 0 1 0 1 0 0 1 

ChM/2+2 1 1 1 0 0 0 1 0 1 1 

Ch. … 1 1 0 0 1 0 1 0 1 0 

Ch. … 1 1 0 0 0 1 1 0 0 0 

ChM/2+M/4 1 1 1 0 1 1 1 0 1 1 
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 The suggested algorithm NS-DSDSC in step one initializes population with   

solutions representing parent population    , then, applies DSDSC algorithm for 

generating offspring   , then performs non-dominated sorting of the entire population 

         to identify different fronts, the crowding distance for finding the      , this 

methodology is similar to the  previous algorithm NSDSC that contains the crowding 

distance but only the optimization algorithm is different. The NS-DSDSC algorithm is 

described in the following Algorithm 3.3 as a pseudo-code.   

  

 

Procedure NS-DSDSC 

Create random solutions to build an initial two populations     of size   Divide 

population   into four quarters;  % divide population into four groups of equal  

                                                       size, each group has different operator applied to it   

while stop Criterion Not Satisfied() do 

Copy C times one chromosome randomly from first front and put it in first 

half of    randomly; 

Apply the dissimilarity and similarity operator for group 1 and group 2 of 

population: 

for               do    % M is population size, s is index of solution 

if first quarter of population then  

    Apply dissimilarity operator, then find and copy the schema, put 

the schema on third quarter of offspring Q then put randomly 0 or 1 in (*) bits 

of the schema in the third quarter and put in offspring set  Q; 

else if second quarter of population then  

     Apply similarity operator and put in offspring set  Q; 

else   

generate randomly fourth quarter and put in offspring set  Q; 

end for 

Create a union set from population P and offspring Q and clear population; 

Build Pareto fronts     from union based on dominance rule; 

Set the current front as       ; 
while length of              do     % until last chromosome 

Sort solutions from the current front by Crowding Distance; 

for each solution in the ordered front do 

if the length of               then 

Include the solution in population; 

end if 

end for 

Go to the next Pareto front; 

end while 

end while 

end procedure 

Algorithm 3. 3 The pseudo-code of the NS-DSDSC Algorithm 
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Figure 3. 20 Flowchart of the DSDSC algorithm [12]. 

 

No 

Yes 

Is the stopping criterion satisfied? 

For the last quarter (M/2+M/4+1..M) of solutions (G4), generate randomly new 

chromosomes. 

For the third quarter (M/2+1..M/2+M/4 ) of solutions (G3), apply the dynamic 

schema generated from Ch1 and ChM/4, then generate new solutions by changing 

(*) to (0 or 1) randomly. 

For the second quarter (M/4+1..M/2 ) of solutions (G2), apply the similarity 

operator to the first and the second chromosome, then to the (new) second and 

the third chromosome, and so on. 

For the first quarter (M/4) of solutions (G1), apply the dynamic dissimilarity 

operator to the first and the second chromosome, then to the (new) second and 

the third chromosome, and so on. 

Divide the population into 4 groups: G1, G2, G3 and G4. 

Evaluate and sort the population according to fitness function, copy C times the 

first solution and insert randomly between (2..M/2). 

Decode chromosomes to find  𝑥    𝑥𝑛 , using the formula 𝑥𝑖  𝑎  

d     l             
𝑏 𝑎

 𝑚𝑖  
, where [a, b] is the range of  𝑥𝑖 . 

Initialize population with M solutions representing points        n . 

Print the best solution and the number of iterations. 
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3.8 Experiment results of NS-DSDSC algorithm 

In this section the experimental results of the NS-DSDSC algorithm are shown, 

we apply this algorithm on 14 different problems, as mentioned in Section 3. 6. Also, see 

Appendix A. 

The experimental results show that our suggested algorithm has good results and 

is faster than NSGA-II when the number of variables is equal to 1, 2, 3, 6, but when the 

number of variables is 10 or 30 the algorithm does not reach the optimum solutions. 

Except for the problem A2-ZDT1, we have got better results than previous algorithm 

NSDSC. The following figures show results for all the functions, where the blue points 

are generated by suggested algorithm (NS-DSDSC) and the red points are generated by 

NSGA-II. 

The parameters used for NSGA-II algorithm are set according to following: 

(population size =200, number of generations =1000, crossover rate = 90%, mutation rate 

= 10%). While the parameters used for NS-DSDSC algorithm are set according to 

following: (population size =200, number of generations =1000). 

In Figures 3.21 to 3.34, we show the results of applying two algorithms (NS-

DSDSC and NSGA-II) on all 14 problems, red points represent the NSGA-II algorithm 

and blue points represent the NS-DSDSC algorithm. Also, the problems A2-ZDT1, A5-

ZDT2, A7-ZDT3, A8-ZDT4 and A9-ZDT6 don’t have got good results in NS-DSDSC, 

but we can observe a little bit improvement in A2-ZDT1 using NS-DSDSC. 

 

Figure 3. 3 Binh and Korn problem using NSGA-II and NS-DSDSC. 

https://en.wikipedia.org/w/index.php?title=Binh_and_Korn_function&action=edit&redlink=1
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Figure 3. 4 Zitzler–Deb–Thiele's problem using NSGA-II and NS-DSDSC. 

 

Figure 3. 5 Kursawe problem using NSGA-II and NS-DSDSC.  

 

Figure 3. 6 Schaffer function (SCH), using NSGA-II and NS-DSDSC. 

https://en.wikipedia.org/w/index.php?title=Kursawe_function&action=edit&redlink=1
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Figure 3. 7 Zitzler–Deb–Thiele's problem using NSGA-II and NS-DSDSC.  

 

Figure 3. 8 Fonseca–Fleming problem using NSGA-II and NS-DSDSC.  

 

Figure 3. 27 Zitzler–Deb–Thiele's problem using NSGA-II and NS-DSDSC.  

https://en.wikipedia.org/w/index.php?title=Fonseca%E2%80%93Fleming_function&action=edit&redlink=1
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Figure 3. 28 Zitzler–Deb–Thiele's using NSGA-II and NS-DSDSC. 

 

Figure 3. 29 Zitzler–Deb–Thiele's problem using NSGA-II and NS-DSDSC. 

 

Figure 3. 30  Binh and Korn problem with constraint using NSGA-II and NS-DSDSC. 

https://en.wikipedia.org/w/index.php?title=Binh_and_Korn_function&action=edit&redlink=1
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Figure 3. 9 SRN problem with constraint using NSGA-II and NS-DSDSC. 

 

Figure 3. 10 The TNK problem with constraint using NSGA-II and NS-DSDSC. 

 

Figure 3. 11 The OSY problem with constraint using NSGA-II and NS-DSDSC. 

https://en.wikipedia.org/w/index.php?title=Binh_and_Korn_function&action=edit&redlink=1
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Figure 3. 12 The CONSTR problem with constraint using NSGA-II and NS-DSDSC. 

In Table 3.5 we have made a comparison in run time among three algorithms 

(NSDSC, NS-DSDSC and NSGA-II), we have found that the run time of two new 

algorithms (NSDSC and NS-DSDSC) is less than NSGA-II in all 14 problems, we 

observed that NS-DSDSC is slower a little bit than NSDSC. But on the other side for 

some problems, we have not reached the optimum Pareto front by using those new 

algorithms NSDSC and NS-DSDSC on problems A2-ZDT1, A5-ZDT2, A7-ZDT, A8-

ZDT4 and A9-ZDT6, because they have 10 or 30 variables.   

 

Table 3. 5 Comparison of NSDSC, NS-DSDSC and NSGA-II in run time 

Function name 

NSDSC 

Time in 

second 

NS-DSDSC 

Time in 

second 

NSGA-II 

Time in 

second 

A1-BNH 24.1824 31.8522 36.8989 

A2-ZDT1 
42.0908 

Not pass * 

43.5415 

Not pass * 
48.0775 

A3-KUR 27.9392 33.5209 45.3970 

A4-SCH 24.3879 28.5681 40.6266 

A5-ZDT2 
40.1732 

Not pass * 

38.8339 

Not pass * 
48.7190 

A6-FON 27.1879 32.5627 44.0588 

A7-ZDT3 
40.7832 

Not pass * 

32.4316 

Not pass * 
46.5388 

A8-ZDT4 
28.2977 

Not pass * 

32.2049 

Not pass * 
42.6555 

A9-ZDT6 30.1160 34.7615 43.2656 
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Not pass * Not pass * 

A10-BNH constraint 29.1140 30.5356 37.0089 

A11-SRN 25.3399 23.5226 38.9880 

A12-TNK 25.1719 23.6143 36.6221 

A13-OSY 125.9281 254.1377 173.8189 

A14-CONSTR 26.2113 29.3958 35.2914 

 

* In problems A2, A5 and A7 by using NSDSC and NS-DSDSC, we have not got the 

optimum solutions of Pareto because those problems have 30 variables, while A8 and A9 have 10 

variables, and we also have not got optimum solutions.  

 

3.9 Conclusion  

We have observed that our suggested algorithm gives good results with functions 

that have the number of variables 1, 2, 3, 6, and with functions which have the number of 

variables 10 and 30, we haven’t obtained good results.  

We noticed that the two new algorithms (NSDSC and NS-DSDSC( did not reach 

the optimal solution in some of problems A2-ZDT1, A5-ZDT2, A7-ZDT, A8-ZDT4 and 

A9-ZDT6,  but they were faster in reaching the optimal solution in the rest of the 

problems  A1-BNH, A3-KUR, A4-SCH, A6-FON, A10-BNH with constraint, A11-SRN, 

A12-TNK, A13-OSY and A14-CONSTR. 

Also we noticed that the optimal solutions of the two new algorithms (NSDSC 

and NS-DSDSC) matched the optimal solutions of the NSGA-II algorithm in the 

problems that reached the optimal solution. 
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CHAPTER FOUR: Hybrid NSDSC with NSGA-II algorithm 

and Applying a First Big Population with Hybird algorithm 

 

4. 1 Introduction  

In this chapter we present two new algorithms: the first one is a hybrid NSDSC 

with NSGA-II algorithm, the second one applies first big population one time then hybrid 

NSDSC with NSGA-II algorithm. The results are better than the results we obtained from 

algorithms NSDSC and NS-DSDSC respectively in Chapter 3.  

     

4. 2 Hybrid Multi-Objective Optimization   

A hybrid Multi-Objective Optimization (MOO) algorithm is an optimization 

algorithm that combines multiple techniques or approaches in order to solve a multi-

objective optimization problem [74]. 

Multi-objective optimization problems involve finding a set of solutions that are 

optimal with respect to multiple conflicting objectives. A common approach to solving 

multi-objective optimization problems is to use evolutionary algorithms, such as genetic 

algorithms or evolutionary strategies, which are able to search a large solution space and 

find a diverse set of high-quality solutions [73]. 

Hybrid MOO algorithms combine multiple techniques or approaches in order to 

improve the performance of the optimization process. For example, a hybrid MOO 

algorithm might combine an evolutionary algorithm with a local search method in order 

to find a set of high-quality solutions more efficiently. Other techniques that might be 

used in a hybrid MOO algorithm include particle swarm optimization, simulated 

annealing, and gradient-based optimization methods [5]. 

Overall, the goal of a hybrid MOO algorithm is to find a set of non-dominated 

solutions that represent a trade-off between the conflicting objectives of the optimization 

problem. These solutions can be used to help decision-makers understand the trade-offs 

involved in solving the problem and choose the best course of action [72]. 
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4. 3 Background of Hybridization 

Particle Swarm Optimization (PSO) and NSGA-II (Non-dominated Sorting 

Genetic Algorithm II) are two algorithms used in the field of optimization. 

Particle Swarm Optimization (PSO) is a population-based optimization algorithm 

that is inspired by the behavior of a flock of birds or a school of fish. It is a simple but 

effective algorithm that can be used to find the optimal solution to a wide range of 

optimization problems [105]. 

NSGA-II (Non-dominated Sorting Genetic Algorithm II) is a multi-objective 

optimization algorithm that can be used to find a set of non-dominated solutions to a 

given optimization problem. It is based on the concept of Pareto optimality defined in 

Section 3.4. This algorithm was described in Section 3.2.2, see also [106]. 

A hybridized PSO-NSGA-II algorithm combines the strengths of both PSO and 

NSGA-II to find a set of non-dominated solutions to an optimization problem. The 

algorithm combines the global search capabilities of PSO with the non-dominated sorting 

and selection mechanisms of NSGA-II to find a diverse set of high-quality solutions. This 

can be particularly useful in cases where the optimization problem has multiple 

conflicting objectives that need to be balanced [105]. 

 

4. 4  A Hybrid NSDSC with NSGA-II Algorithm 

In this section we introduce a new hybrid Multi-Objective Optimization 

algorithm, this new algorithm is based on two algorithms: the first one is NSDSC that we 

have introduced in Chapter 3, the second one is normal NSGA-II. This new algorithm is 

named it Hybrid NSDSC with NSGA-II, see Algorithm 4.1.  

In this new method, we apply the NSDSC algorithm for 100 iterations, then we 

take the last generation as an input for NSGA-II for 350 iterations. Figure 4.1 shows a 

simple flowchart of this algorithm. 
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Figure 4. 1 A simple flowchart for hybrid NSDSC with NSGA-II  

 

Procedure Hybrid NSDSC with NSGA-II 

Create random solutions to build an initial two populations     of size  ;  

Sort P by nondomination and build Pareto fronts; 

iteration = 0; 

while iteration < 100  do 

Copy C times one chromosome randomly from first front and put it in first 

half of    randomly;   % where C is    . 

for               do    %   is population size, s is index of solution 

if first quarter of population then  

    Apply dissimilarity on chromosomes             from 

population P and put the result in the offspring set Q respectively;  

else if second quarter of population then  

     Apply similarity on chromosomes            from population P 

and put the result in the offspring set Q respectively;   

else  

generate randomly second half offspring set Q;   

end for 

Create a union set from population and offspring and clear population; 

Build Pareto fronts     from union based on dominance rule; 

Set the current front as       ; 
while length of             do 

Sort solutions from the current front by Crowding Distance; 

for each solution in the ordered front do 

if the length of               then 

Include the solution in population; 

Apply NSDSC for 100 iterations 

iterations 

Take the last population and input for the NSGA-II 

Apply NSGA-II for 250 iterations 

Print result 



Aisha Younus                                  New Algorithms for Multi-objective Optimization …Chapter 4 

 72 

 

end if 

end for 

Go to the next Pareto front; 

end while 

iteration= iteration+1; 

end while 

 

Get the Pareto front as an initial population set; 

iteration =0 ; 

while iteration < 350  do 

for               do 

Select two parents          from population P; 

Execute crossover of          and generate offspring set   ; 

Mutate           from population  ; 

Evaluate and insert them in offspring set  ; 

end for 

Create a union set from population and offspring and clear population; 

Build Pareto fronts     from union based on dominance rule; 

Set the current front as       ; 
while length of              do   % until last chromosome 

Sort solutions from the current front by Crowding Distance; 

for each solution in the ordered front do 

if the length of               then 

Include the solution in population; 

end if 

end for 

Go to the next Pareto front; 

end while 

iteration= iteration+1; 

end while 

end procedure 

Algorithm 4. 1  The pseudo-code of the hybrid NS-DSC with NSGA-II 

 

4.5 Experiment results of Hybrid NSDSC with NSGA-II algorithm 

In Figures 4.2 to 4.4, we show the results of applying two algorithms (hybrid 

NSDSC with NSGA-II using 100 iterations and NSGA-II using 250 iterations). In this 

hybrid algorithm we have got good solutions for 5 problems A2-ZDT1, A5-ZDT2, A7-

ZDT, A8-ZDT4 and A9-ZDT6, that we have not got the optimal Pareto front by two 

previous algorithms (NSDSC, NS-DSDSC), red points represent the NSGA-II algorithm 

and blue points represent the Hybrid NSDSC with NSGA-II algorithm.  
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We observe that we have got good results also for the problem A2-ZDT1 by 

changing the number of iterations of NSDSC to 100 iterations and then 250 iterations of 

the NSGA-II algorithm. This is the least number of iterations that give good results for 

this function by using hybrid NSDSC with NSGA-II algorithm in 17 seconds, while in 

the original NSGA-II algorithm was 40 seconds for the same Pareto front results by using 

500 iterations. So, we have noticed that we can change the number of iterations in our 

hybrid algorithm according to the type of problem. See Figure 4.3.  

 

 

Figure 4. 2 A2-ZDT1 problem using (Hybrid NSDSC - NSGA-II) 

We have observed that the results we have obtained by the (hybrid NSDSC with 

NSGA-II) algorithm even outperformed the results of the original algorithm NSGA-II, by 

using 300 iterations with NSDSC and 300 iterations of NSGA-II on problem A9-ZDT6. 

The illustration shows that the Hybrid NSDSC with NSGA-II results better than NSGA-

II, see Figure 4.3, but the run time was longer, 14 seconds for Hybrid and 12 seconds for 

NSGA-II, In this special experiment where the number of iterations in NSGA-II was 500. 

Here we noticed the effect of first population that is got it from NSDSC and put it in 

NSGA-II as first population.   
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Figure 4. 3 A9-ZDT6 problem using (Hybrid NSDSC - NSGA-II) 

 

We have noticed that the results we have obtained by the hybrid NSDSC with 

NSGA-II algorithm even outperformed the results of the original algorithm NSGA-II on 

problem A13-OSY  as shown in Figure 4.5.  

 

Figure 4. 4 A13-OSY problem using (Hybrid NSDSC - NSGA-II) 

Table 4.1 shows the run time in seconds, and shows the superiority of the 

algorithm Hybrid NSDSC with NSGA-II over original algorithm NSGA-II in all 14 

problems mentioned above. We have used 100 iterations for NSDSC and 350 iterations 
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for NSGA-II in hybrid algorithm. While we have used 500 iteration for original NSGA-II 

to get the results for all problems.  

 

Table 4. 1 Comparison between  Hybrid NSDSC  

with NSGA-II and NSGA-II, time in seconds 

Function name 

Hybrid NSDSC 

with NSGA-II 

Time in seconds 

NSGA-II 

Time in 

seconds 

A1-BNH 10.8411 17.8989 

A2-ZDT1 29.8886 40.0775 

A3-KUR 11.9881 19.3820 

A4-SCH 11.3431 18.5226 

A5-ZDT2 28.8200 43.7120 

A6-FON 11.5086 19.2528 

A7-ZDT3 30.0439 45.4677 

A8-ZDT4 15.0783* 21.3687 

A9-ZDT6 13.1751 19.8983 

A10-BNH 

constraint 

11.5523 19.0894 

A11-SRN 10.4452 18.2766 

A12-TNK 9.2073 17.9010 

A13-OSY 50.5155 86.8131 

A14-

CONSTR 

9.9825 16.9939 

* In this problem, we increased the number of iterations for NSGA-II part to 450 iterations to get 

a true Pareto front. 
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4. 6 Hybrid First Big Population NSDSC with NSGA-II Algorithm 

The initial population generation is required for starting a GA to solve an 

optimization problem. In general, the population size doesn't change over generations. 

The primary challenge with the initial population is that chromosomes created at random 

might not meet the problem's constraints. The original population may be insufficient to 

the problem, which presents another significant challenge [12].  

The minimum population size should be determined according to the problem size 

[12].  

The initial population is produced by randomly determining p chromosomes, where p 

is a  population size [107].   

Using a good initial population in evolutionary algorithms gives faster results 

[59]. Paying attention to the initial population may have an impact on the effectiveness of 

the genetic algorithm, and additional investigation and discussion are encouraged [93]. 

The convergence to the Pareto front is significantly sped up by a well-distributed  

beginning population [91]. 

 

4. 7 Methodology of Hybrid First Big Population NSDSC with NSGA-II 

In this work we introduce a new method using a big initial population which is not 

presented in literature before. This method is named Hybrid First Big Population NSDSC 

with NSGA-II (Hybrid-FBP-NSDSC-NSGA-II).  

Briefly, the hybridization algorithm consists of  three steps to find the solution for 

multi-objective optimization: first we use a big initial population, the population size 

(Init=1000) chromosomes as initial population for NSDSC and we choose the best Z 

chromosomes (Z=200) as a primary population (Internal Population) for the second step, 

in the second step we apply the NSDSC algorithm, in the third step we apply the NSGA-

II algorithm.  

In this new method, we first take (Init=1000) big population with applying 

NSDSC one time, the NSDSC that mentioned in Section 3.4, then take the best 200 
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chromosomes from the best Pareto fronts as population size for second step, in step two 

we apply NSDSC algorithm for N iterations (N=50), we take then the last generation as 

an input for step three, in step three we apply NSGA-II for M iterations (M=350). The 

result was faster than previous work in most functions except for problem P8-ZDT4. But 

with increase of the first big population to (Init=2000), then (N=50) iterations in NSDSC, 

then (M=450) iterations in NSGA-II, we get a very good solution for function 8. 

The pseudo-code of this algorithm the same as the previous one, only we start with a big 

initial population. 

 

Procedure Hybrid First Big initial pop NSDSC with NSGA-II 

Step1:  

Generate the big initial population (Init=1000) {Big Pop NSDSC} % sorted by 

non-dominated sorting  

     Iteration = 1;   

Create solutions to build an initial two populations     of size   from first fronts 

taken from big population.  

Sort P by nondomination and build Pareto fronts; 

     while iteration <= 1  do        {NSDSC one time } 

Copy C times one chromosome randomly from first front and put it in first 

half of    randomly;  % where C equals   8, N is the number of  

chromosomes in the population.  

for               do   % p is population,   is index of solution 

if first quarter of population then  

Apply dissimilarity on chromosomes            from 

population P and put the result in the offspring set Q; 

else if second quarter of population then  

Apply similarity on chromosomes            from population P 

and put the result in the offspring set Q;   

else generate randomly second half offspring set Q;   

end for 

Create a union set from population and offspring and clear population; 

Build Pareto fronts     from union based on dominance rule; 

Set the current front as       ; 
while length of              do     % until last chromosome 

Sort solutions from the current front by Crowding Distance; 

for each solution in the ordered front do 

if the length of               then 

Include the solution in population; 

end if 

end for 

Go to the next Pareto front; 



Aisha Younus                                  New Algorithms for Multi-objective Optimization …Chapter 4 

 78 

 

end while 

iteration= iteration+1; 

end while 

 

Step 2: take the best (Z=200) chromosomes from step 1 as an initial population set; 

     Iteration = 0;          {NSDSC} 

     while iteration <= 50  do 

Copy C times first chromosome and put it in first half of    randomly;   

for               do 

if first quarter of population then  

Apply dissimilarity chromosomes            from population 

P and put the result in the offspring set Q; 

else if second quarter of population then  

Apply similarity on chromosomes            from population P 

and put the result in the offspring set Q;   

else generate randomly second half offspring set Q;   

end for 

Create a union set from population and offspring and clear population; 

Build Pareto fronts     from union based on dominance rule; 

Set the current front as       ; 
while length of              do 

Sort solutions from the current front by Crowding Distance; 

for each solution in the ordered front do 

if the length of               then 

Include the solution in population; 

end if 

end for 

Go to the next Pareto front; 

end while 

iteration= iteration+1; 

end while 
 

Step 3: take the last population from step 2 as an initial population set; 

Iteration = 0; 

while iteration < 350  do       {NSGA-II} 

for               do 

Select two parents          from population P; 

Execute crossover of          and generate offspring set   ; 

Mutate            from population  ; 

Evaluate and insert them in offspring set  ; 

end for 

Create a union set from population and offspring and clear population; 

Build Pareto fronts     from union based on dominance rule; 

Set the current front as       ; 
while length of              do 

Sort solutions from the current front by Crowding Distance; 
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for each solution in the ordered front do 

if the length of               then 

Include the solution in population; 

end if 

end for 

Go to the next Pareto front; 

end while 

Iteration = Iteration +1; 

end while 

end procedure  

Algorithm 4. 2  The pseudo-code of Hybrid First Big initial pop NSDSC with NSGA-II 

 

4.8 Experiment results of hybrid first big population NSDSC with 

NSGA-II algorithm 

In this section will describe the results that we have got by applying big initial 

population plus the previous hybrid algorithm, to see the effect of big initial population 

on 14 test problems. In Figures 4.5 to 4.7 we got very good Pareto result for problem A2-

ZDT1, A5-ZDT2 and A7-ZDT3 that have 30 variables, while in previous algorithms 

(NSDSC, NS-DSDSC) we have not reached to the Pareto optimum front.   

 

Figure 4. 5    The A2-ZDT1 problem by using Hybrid-FBP-NSDSC-NSGA-II compared 

with NSGA-II 
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Figure 4. 4 The A5-ZDT2 problem by Hybrid-FBP-NSDSC-NSGA-II compared with 

NSGA-II 

 

Figure 4. 5 The A7-ZDT3 problem by using Hybrid-FBP-NSDSC-NSGA-II compared 

with NSGA-II 

We have noticed that for problem P8-ZDT4 we have not reached to optimal 

solutions when Init=1000, 50 iterations in NSDSC-II, 350 iterations in NSGA-II, as see 

Figure 4. 8. But, when we increase the size of a big population and the number of 

iterations (big pop=2000, 50 iterations in NSDSC, 450 iterations in NSGA-II) it is a little 

better than NSGA-II see Figure 4.9,  (blue points represent Big Pop with hybrid NSDSC 

with NSGA-II, while red points represent NSGA-II), we notice that the NSGA-II did not 

reached the optimum Pareto front in problem A8-ZDT4 as shown in Figure 4.9 where we 

used 500 iterations for NSGA-II. 
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Figure 4. 6  The A8-ZDT4 problem by using Hybrid-FBP-NSDSC-NSGA-II compared 

with NSGA-II 

.  

 

Figure 4. 7  The A8-ZDT4 problem by using Hybrid-FBP-NSDSC-NSGA-II compared 

with NSGA-II after increasing big pop, init=2000, 50 iterations in NSDSC, 450 iterations 

in NSGA-II 

 



Aisha Younus                                  New Algorithms for Multi-objective Optimization …Chapter 4 

 82 

 

In Table 4. 2 we compared  NSGA-II and  Big Population Hybrid  NSDSC with 

NSGA-II in run time, the results show that the Big Population Hybrid  NSDSC with 

NSGA-II is better than NSGA-II in all 14 problems. For problem A8-ZDT4 we don’t 

have reached the optimal solutions (not pass), but when we made new different 

experiments with different parameters for example as follow: (big pop=2000, iterations in 

NSDSC=50 , iterations in NSGA-II= 450) we have reached the Pareto optimal solutions 

in 19.478 seconds.  

 

Table 4. 2 hybrid first big population  NSDSC with NSGA-II time in seconds 

Function name 

1000 big 

pop one 

time, 

50 iteration 

NSDSC, 

350 

iterations 

NSGA-II 

NSGA-II 

Time in 

seconds 

500 iteration 

A1-BNH 9.4692 17.8989 

A2-ZDT1 25.543 42.276 

A3-KUR 11.3808 19.3820 

A4-SCH 10.8477 18.5226 

A5-ZDT2 25.0906 43.7120 

A6-FON 10.9543 19.2528 

A7-ZDT3 26.2437 45.4677 

A8-ZDT4 
11.9668  

not pass* 

21.3687 

A9-ZDT6 10.5244 19.8983 

A10-BNH constraint 9.5766 19.0894 

A11-SRN 9.7232 18.2766 

A12-TNK 9.3709 17.9010 

A13-OSY 47.8866 86.8131 

A14-CONSTR 9.3573 16.9939 

* After increasing the number of iterations (big pop=2000, 50 iterations in NSDSC, 450 

iterations in NSGA-II) we have reached the Pareto optimal solutions in 19.478 seconds. 
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4.6 Conclusion  

In this chapter, we have noticed that the use of hybrid algorithms gives us better 

results than the two previous algorithms NSDSC and  NS-DSDSC, when we tested them 

on 14 problems mentioned above, especially with the problems A2-ZDT1, A5-ZDT2, 

A7-ZDT, A8-ZDT4 and A9-ZDT6 for which the NSDSC  and NS-DSDSC algorithms 

have founded difficulties to reach optimal solutions.  

In particular, the problem A8-ZDT4 doesn’t  pass, but when we increase the 

number of iterations  (big pop=2000, iterations in NSDSC=50 , iterations in NSGA-II= 

450) we get better results than NSGA-II with 500 iteration. Also, run times in the hybrid 

algorithm are much better than for NSDSC, NS-DSDSC and NSGA-II. 
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CHAPTER FIVE: Multitasking on MOO 

 

5.1 Introduction  

In this chapter we introduce a new algorithm called Multitasking on Multi-

Objective Optimization (MMOO) and we show that the results are satisfactory compared 

to the algorithms in the previous chapters (NSDSC, NS-DSDSC, Hybrid NSDSC- 

NSGA-II, Hybrid-FBP-NSDSC-NSGA-II), for all 14 problems. 

In the last part of this thesis, we present an examination of the algorithms 

mentioned in the third and fourth chapters, as well as the algorithm in this chapter on all 

14 problems by the seven measures and compare our algorithms with the NSGA-II 

algorithm. 

 

5.2 Multitasking background 

In [3], for the purpose of resolving Constrained Multi-objective Optimization 

Problems (CMOPs), an Evolutionary Multitasking-based Constrained Multi-objective 

Optimization (EMCMO) framework is created. In EMCMO, a CMOP optimization is 

split into two tasks that are related to one another: one task is for the original CMOP, 

while the other task just considers the objectives while ignoring all constraints. The major 

goal of the second task is to help solve CMOP by providing reasonable knowledge about 

the first task's goals. 

In [10] numerous potential benefits of implicit genetic transfer in a multitasking 

setting are revealed by the numerical studies. Most importantly, the authors show that for 

a range of difficult optimization functions, the creation and transfer of refined genetic 

material frequently results in rapid convergence. 

The primary goal of [10] that introduce  Multi Factorial Optimization (MFO) as a 

novel idea in optimization and evolutionary computation that is distinct from the concepts 

of SOO and MOO. The next step is to create a generic EA for MFO that can multitask 

across many optimization problems in the most effective way feasible. 
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For instance, while an individual’s ability to learn may be influenced by their 

genotype, spreading of a cultural feature may produce or modify the selection operating 

on their genetic system [108], [10]. These cultural features frequently result from social 

learning or from parents teaching their children particular traditions and preferences. For 

the aim of effective evolutionary multitasking, the computational equivalent of 

multifactorial inheritance is provided by assuming that each optimization task contributes 

a different environment in which offspring can be raised. 

As an example of multitasking  [109] has used the binary clustering approach, 

where the population is separated into various classes, and the representative point for 

each class is computed. Then, a powerful method for generating multiple prediction 

directions by representative points is developed. Following that, a mutation strength 

adaptation strategy is suggested in accordance with the level of improvement for each 

class. Finally, the prediction directions and mutation strengths generate the predictive 

transferred solutions as transfer knowledge. 

 

5.3 The Multitasking on MOO algorithm  

Consider a multi-objective problem with two objectives, for example, one of the 

test problems listed in Appendix A. We apply the evolutionary multitasking method to 

this problem, where one task is to solve the original multiobjective problem, and the other 

two tasks are for minimizing two objective functions separately. In this way, we obtain 

three different solutions: one for the multiobjective problem, and the other two are the 

minimum points of the two objective functions, respectively. 

The initial population may be disproportionate to the problem, that may delay 

reaching to optimum solution for the problem [12]. So, in our work we try to enhance all 

population by using a new idea in multitasking on MOO that put the best 6 chromosomes 

which taken from single objective functions in specific position in population, also, a 

random part in other specific positions, these some populations were represented the first 

20% of generations.  
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Then we compare the results of the multitasking method with the results obtained 

by applying some multiobjective optimization algorithms (for example, NSDSC, NS-

DSDSC, Hybrid NSDSC with NSGA-II, Hybrid first big pop NSDSC with NSGA-II, 

NSGA-II) to determine whether or not multitasking really helps to solve the 

multiobjective problem. Of course, the same can be done for more than two objectives. 

 

 Suppose that we have given the following two functions: 

               

where 

   ∏           

 

   

  

We consider the following two-objective minimization problem:  

                                       

where: 

      is the first objective function to be minimized, 

      is the second objective function to be minimized. 

The variable x represents a vector of decision variables, and the problem is to find 

the optimal x’s that give a Pareto optimum to this problem. 

In our multitasking method, we use the following three tasks: 

Task   : minimize    on  , in this task we minimize the first objective function (  ) as a 

single objective.  

Task   : minimize    on  , in this task we minimize the second objective function (  ) as 

a single objective.  

Task   : minimize             on   (in the Pareto sense), in this task we apply a 

multiobjective optimization on (   ,  ).   
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The details of the Multitasking on MOO algorithm are explained in Algorithm 5.1 

below. In our algorithm, we use one population for all three tasks. 

Procedure Multitasking on MOO 

Generate the initial population randomly 

While (stopping criterion is not satisfied) do 

If (number of iteration < 20% of max number of generations) then 

    do the tasks                 , according to the following steps: 

1. For         take the indexes of best six chromosomes (best three values for    

and   ) from list of chromosomes that sorted in ascending order with respect to   . 

2. Insert the best six chromosomes for    and    and put them in the first quarter of 

population in fixed locations (10, 15, 20, 25, 30, 35). 

3. Generate randomly 20 chromosomes (10% of population) and insert them in the 

second quarter of population.  

4. For          apply NSGA-II,  

Else  

  For the rest of generations (80%) apply only the normal NSGA-II 

End if 

End  

Algorithm 5. 1  The Multitasking on MOO algorithm 

 

5.4 Experimental results of Multitasking of MOO Algorithm 

We have used the Multitasking on MOO algorithm and applied it to the problems 

A2-ZDT1, A5-ZDT2, A7-ZDT, A8-ZDT4 and A9-ZDT6, where we have not reached the 

optimal solutions using NSDSC and NS-DSDSC algorithms. We note that this 

Multitasking on MOO algorithm has reached the optimal solutions in a similar way as the 

NSGA-II algorithm. It also appears from the experimental results that the Multitasking on 

MOO algorithm is even better than the hybrid algorithms in the previous chapter, because 

the hybrid algorithms don’t reach the Pareto front until we increase the number of 

iterations to 450 in NSGA-II with the eighth problem. 

In this work, optimization is performed in MATLAB environment using the code 

from [110]. In this code we made some changes to suit the problems and algorithms that 

have been used in this thesis, with fourteen problems with and without constraints.  
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In the Figures below from Figure 5. 1 to Figure 5. 6, we note that the Multitasking 

on MOO algorithm has achieved good results in problems A2-ZDT1, A5-ZDT2, A7-

ZDT, A8-ZDT4 and A9-ZDT6 that the previous algorithms could not find solutions for. 

 

Figure 5. 1 The A2-ZDT1 problem by using Multitasking on MOO 

 

Figure 5. 2 The A5-ZDT2 problem by Multitasking on MOO 
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Figure 5. 3The A7-ZDT3 problem by using Multitasking on MOO 

 

Figure 5. 4The A8-ZDT4 problem by using Multitasking on MOO 
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Figure 5. 5 A9-ZDT6 problem using Multitasking on MOO 

 

Figure 5. 6 A13-OSY problem using Multitasking on MOO 



Aisha Younus                                  New Algorithms for Multi-objective Optimization …Chapter 5 

 91 

 

Table 5. 1 shows a comparison of the run time between the Multitasking on MOO 

algorithm and the NSGA-II algorithm. We note that the run time for the Multitasking on 

MOO algorithm is less than for the NSGA-II, which is due to the smaller number of 

iterations. However, when we limited the number of iterations to 500 only for 

Multitasking on MOO, we got the same results of the Pareto front as with 1000 iterations 

for NSGA-II (see Figures 5.1 – 5.6). 

 

Table 5. 1  Comparison of Multitasking on MOO and NSGA-II in run time 

Function 

name 

Multitasking  

Time in seconds 

500 itr. 

NSGA-II 

Time in seconds 

 1000 itr. 

A1-BNH 20.3891 36.8989 

A2-ZDT1 43.3132 48.0775 

A3-KUR 21.1785 45.3970 

A4-SCH 16.7288 40.6266 

A5-ZDT2 41.7142 48.7190 

A6-FON 17.9614 44.0588 

A7-ZDT3 43.4190  46.5388 

A8-ZDT4 21.6583 42.6555 

A9-ZDT6 18.0601  43.2656 

A10-BNH 

constraint 
20.9853 37.0089 

A11-SRN 17.5782   38.9880 

A12-TNK 17.3287  36.6221 

A13-OSY 89.2943  173.8189 

A14-CONSTR 18.1737  35.2914 

 

We have also tested 14 problems by using 50 iterations for the Multitasking on MOO 

algorithm and 50 iterations for the NSGA-II algorithm. We observed that Multitasking on MOO 

is, in most cases, superior than NSGA-II, and achieves the Pareto front faster, because it has 
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a positive impact on the initial generations. Figures 5.7 – 5.12 show some of test problems, 

where the blue points represent Multitasking on MOO and red points represent NSGA-II.  

 

Figure 5. 7 A2-ZDT1 problem using Multitasking on MOO and NSGA-II with 50 

iterations for each algorithm 

 

 

Figure 5. 8 A5-ZDT2 problem using Multitasking on MOO and NSGA-II with 50 

iterations for each algorithm 



Aisha Younus                                  New Algorithms for Multi-objective Optimization …Chapter 5 

 93 

 

 

Figure 5.  9 A7-ZDT3 problem using Multitasking on MOO and NSGA-II with 50 

iteration for each algorithm 

 

 

Figure 5. 10 A8-ZDT4 problem using Multitasking on MOO and NSGA-II with 

50 iterations for each algorithm 
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Figure 5. 11 A9-ZDT6 problem using Multitasking on MOO and NSGA-II with 50 

iteration for each algorithm 

 

 

Figure 5. 12 A13-OSY problem using Multitasking on MOO and NSGA-II with 50 

iteration for each algorithm 
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Tables 5. 2 shows comparison of all algorithms: NSGA-II, NSDSC, NS-DSDSC, 

Hybrid NSDSC with NSGA-II, Big Population Hybrid NSDSC with NSGA-II and 

Multitasking on MOO in run time (time in seconds). This table illustrates that our algorithms 

are better than NSGA-II in run time with the same number of 1000 iterations for NSDSC and 

NS-DSDSC, except some problems that NSDSC and NS-DSDSC could not solve. We 

noticed that the  best run time is for Big population Hybrid NSDSC with NSGA-II algorithm 

with total number of iterations equal to 400, but only the problem A8-ZDT4 has not reached 

Pareto front, on the other hand, for the same problem (A8-ZDT4) when we increase the 

number of iterations in NSGA-II to  450 the algorithm will reach to Pareto front. The 

reference set was taken form NSGA-II for all metrics (IGD, GD, HV, Spacing  Metric , Delta 

P, Spread metric). 

 

Table 5. 2 Comparison of all algorithms: NSGA-II, NSDSC, NS-DSDSC, Hybrid NSDSC 

with NSGA-II,  Big population Hybrid NSDSC with NSGA-II and Multitasking on MOO in 

run time 

       

A1-BNH 17.8989 24.1824 31.8522 10.8411 9.4692 20.3891 

A2-ZDT1 42.276 42.0908* 43.5415* 29.8886 25.543 43.3132 

A3-KUR 19.3820 27.9392 33.5209 11.9881 11.3808 21.1785 

A4-SCH 18.5226 24.3879 28.5681 11.3431 10.8477 16.7288 

A5-ZDT2 43.7120 40.1732* 38.8339* 28.8200 25.0906 41.7142 

A6-FON 19.2528 27.1879 32.5627 11.5086 10.9543 17.9614 

A7-ZDT3 45.4677 40.7832* 32.4316* 30.0439 26.2437 43.4190 

A8-ZDT4 21.3687 28.2977* 32.2049* 15.0783* 
11.9668 

** 
21.6583 

A9-ZDT6 19.8983 30.1160* 34.7615* 13.1751 10.5244 18.0601 
A10-BNH 
constraint 

19.0894 29.1140 30.5356 11.5523 9.5766 20.9853 

A11-SRN 18.2766 25.3399 23.5226 10.4452 9.7232 17.5782 

A12-TNK 17.9010 25.1719 23.6143 9.2073 9.3709 17.3287 

A13-OSY 86.8131 125.9281 254.1377 50.5155 47.8866 89.2943 

A14-CONSTR 16.9939 26.2113 29.3958 9.9825 9.3573 18.1737 

* Not pass to the Pareto front. 

** If we increase the number of iterations to 450 in NSGA-II, the algorithm will reach to the optimum 

solutions as shown in Figure 4.10 Blue points. 
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Table 5. 3 shows the results of all Algorithms, NSGA-II, NSDSC, NS-DSDSC, hybrid 

NSDSC with NSGA-II, Big population Hybrid NSDSC with NSGA-II and Multitasking 

on MOO using IGD metric on tested problems  

Function 

name 
NSGA-II NSDSC 

NS-

DSDSC 

Hybrid 

NSDSC 

with 

NSGA-II 

Big_pop+ 

Hybrid 

NSDSC 

with 

NSGA-II 

Multitasking 

on MOO 

A1-BNH 0.218597 0.33696 0.3629 0.34194 0.32173 0.26935 

A2-ZDT1 0.0040749 0.11187 0.075271 0.012054 0.01721 0.017231 

A3-KUR 0.020047 0.0714 0.025259 0.02083 0.020674 0.019964 

A4-SCH 0.0082489 0.01038 0.010953 0.0081676 0.0094426 0.0084038 

A5-ZDT2 0.0025518 0.35667 0.38423 0.0025745 0.0065798 0.002325 

A6-FON 0.0025878 0.0025047 0.0028267 0.0026423 0.0025123 0.0027971 

A7-ZDT3 0.002765 0.26306 0.1088 0.0034024 0.0045244 0.0026206 

A8-ZDT4 0.002412 0.50553 0.50219 0.14408 0.13818 0.0033605 

A9-ZDT6 0.0030738 0.34736 0.40755 0.0070988 0.0027567 0.0022695 

A10-BNH 

constraint 
0.27149 0.23217 0.2625 0.24374 0.26853 0.26796 

A11-SRN 0.54692 0.49751 0.54241 0.56506 0.52795 0.5286 

A12-TNK 0.001971 0.0049136 0.0074075 0.0020734 0.0021483 0.0020745 

A13-OSY 0.3393 1.5682 1.9782 5.3141 1.9908 0.70325 

A14-

CONSTR 
0.011618 0.01357 0.013106 0.011887 0.013729 0.012022 

 

5.5 Experiment Results of Performance Measures 

In this section we present experimental results of performance for all algorithms 

(NSGA-II, NSDSC, NS-DSDSC, Hybrid NSDSC with NSGA-II, Big population with 

Hybrid NSDSC with NSGA-II and Multitasking on MOO) on 14 test multi-objective 

problems, we used seven performance metrics (IGD, GD, HV, Spacing, Spread, DeltaP 
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and      metric), six of them were mentioned in Section 2.5, and the      metric will be 

described in Section 5.6. For more details see [111].    

In Tables 5.3 - 5.8 we show the six performance metrics (IGD, GD, HV, Spacing 

metric, Spread metric, DeltaP metric), computed for the results of our proposed 

algorithms, where we took the NSGA-II algorithm and considered it the true Pareto front 

solutions to find these metrics. In Figures 5.13 - 5.18 we show the performance metrics 

(IGD, GD, HV, Spacing metric, Spread metric, DeltaP metric) for the same results as in 

Tables, respectively.  

 We observe that the lower value of IGD, GD and DeltaP metrics means the 

higher efficiency of the algorithm, while the higher value of HV, Spacing and Spread 

metrics also means the higher efficiency of the algorithm.  

 

 

Figure 5. 13 shows the results of all Algorithms, NSGA-II, NSDSC, NS-DSDSC, hybrid 

NSDSC with NSGA-II, Big population Hybrid NSDSC with NSGA-II and Multitasking 

on MOO using IGD metric on tested problems 
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Table 5. 4 shows the results of all algorithms: NSGA-II, NSDSC, NS-DSDSC, hybrid 

NSDSC with NSGA-II,  Big Population Hybrid NSDSC with NSGA-II and Multitasking 

on MOO using GD metric on tested problems 

Function 

name 
NSGA-II NSDSC 

NS-

DSDSC 

Hybrid 

NSDSC 

with 

NSGA-II 

Big_pop+ 

Hybrid 

NSDSC 

with 

NSGA-II 

Multitasking 

On MOO 

A1-BNH 0.037062 0.033173 0.032214 0.031276 0.029445 0.029545 

A2-ZDT1 0.004409 0.0072457 0.0029545 0.0073475 0.051861 0.00034191 

A3-KUR 0.001631 0.0045643 0.0020911 0.0017161 0.0016587 0.0015548 

A4-SCH 0.000720 0.0007688 0.0007900 0.0007182 0.0007753 0.0007663 

A5-ZDT2 0.0002909 0.0027252 0.0037056 0.0002451 0.0005008 0.00022645 

A6-FON 0.0002191 0.0002180 0.0002342 0.0002141 0.0002148 0.00021881 

A7-ZDT3 0.0002865 0.0030255 0.001904 0.0003118 0.0003513 0.00027506 

A8-ZDT4 0.0001973 0.010681 0.0067269 0.0039666 0.0042 0.00027216 

A9-ZDT6 0.00029559 0.016413 0.019825 0.0005283 0.0002162 0.00021883 

A10-BNH 

constraint 
0.025267 0.023411 0.025843 0.023925 0.024158 0.024976 

A11-SRN 0.045413 0.046442 0.046125 0.047245 0.047789 0.047981 

A12-TNK 0.00016868 0.00024073 0.00023633 0.00017234 0.00018145 0.00017391 

A13-OSY 0.061796 0.18696 0.11466 0.047288 0.02756 0.12148 

A14-

CONSTR 
0.0011564 0.0012272 0.0012166 0.0011821 0.0013074 0.0012005 
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Figure 5. 14 shows the results of all algorithms: NSGA-II, NSDSC, NS-DSDSC, hybrid 

NSDSC with NSGA-II, Big population Hybrid NSDSC with NSGA-II and Multitasking 

on MOO using GD metric on tested problems 

 

Table 5. 5 shows the results of all algorithms: NSGA-II, NSDSC, NS-DSDSC, hybrid 

NSDSC with NSGA-II, Big population Hybrid NSDSC with NSGA-II and Multitasking 

on MOO using HV metric on tested problems 

 

Function 

name 
NSGA-II NSDSC 

NS-

DSDSC 

Hybrid 

NSDSC 

with 

NSGA-II 

 

Big_pop+ 

Hybrid 

NSDSC 

with 

NSGA-II 

Multitasking 

on MOO 

A1-BNH 0.86009 0.86023 0.86008 0.86016 0.86011 0.86090 

A2-ZDT1 0. 84748 0.77363 0.79545 0.84582 0.83801 0.84747 

A3-KUR 0.53571 0.53862 0.53592 0.53571 0.53581 0.5358 

A4-SCH 0.86072 0.86062 0.8604 0.86075 0.8608 0.86081 

A5-ZDT2 0.44609 0.14208 0.12167 0.44462 0.43763 0.44617 

A6-FON 0.43220 0.43198 0.43183 0.43231 0.43234 0.43241 

A7-ZDT3 0.60027 0.63031 0.66268 0.59937 0.60014 0.60031 
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Function 

name 
NSGA-II NSDSC 

NS-

DSDSC 

Hybrid 

NSDSC 

with 

NSGA-II 

 

Big_pop+ 

Hybrid 

NSDSC 

with 

NSGA-II 

Multitasking 

on MOO 

A8-ZDT4 0.72084 0.17049 0.17743 0.56039 0.56044 0.71761 

A9-ZDT6 0.41151 0.13069 0.093806 0.3986 0.40509 0.40595 

A10-BNH 

constraint 
0.78474 0.78492 0.78471 0.78493 0.78468 0.78485 

A11-SRN 0.59342 0.59407 0.59396 0.59344 0.5935 0.59362 

A12-TNK 0.40072 0.396 0.39649 0.40061 0.40059 0.40072 

A13-OSY 0.76391 0.74342 0.76781 0.81581 0.79849 0.76018 

A14-

CONSTR 
0.48166 0.48161 0.4816 0.48161 0.48164 0.48166 

 

 

 

 

Figure 5. 15 shows the results of all algorithms: NSGA-II, NSDSC, NS-DSDSC, hybrid 

NSDSC with NSGA-II, Big population Hybrid NSDSC with NSGA-II and Multitasking 

on MOO using HV metric on tested problems 
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Table 5. 6 shows the results of all algorithms: NSGA-II, NSDSC, NS-DSDSC, hybrid 

NSDSC with NSGA-II,  Big population Hybrid NSDSC with NSGA-II and Multitasking 

on MOO using Spacing  Metric on tested problems 

Function 

name 
NSGA-II NSDSC 

NS-

DSDSC 

Hybrid 

NSDSC 

with 

NSGA-II 

Bigpop+ 

Hybrid 

NSDSC 

with 

NSGA-II 

Multitasking 

on MOO 

A1-BNH 0.5961 0.56665 0.48151 0.57847 0.58872 0.5593 

A2-ZDT1 0.03765 0.004718 0.0003815 0.089579 0.008001 0.00347 

A3-KUR 0.06996 0.06078 0.069982 0.070142 0.070052 0.07047 

A4-SCH 0.01028 0.012869 0.012196 0.010959 0.011073 0.01054 

A5-ZDT2 0.003759 0.019553 0.011106 0.003094 0.002727 0.003383 

A6-FON 0.003807 0.002335 0.0027227 0.003274 0.003158 0.003221 

A7-ZDT3 0.003453 0.028031 0.019944 0.003917 0.003585 0.003483 

A8-ZDT4 0.003089 0.013755 0.016597 0.006197 0.004551 0.003259 

A9-ZDT6 0.003186 0.002124 0.0019765 0.002747 0.002938 0.002890 

A10-BNH 

constraint 
0.38417 0.36059 0.33839 0.33839 0.36678 0.38447 

A11-SRN 0.73881 0.81101 0.6317 0.73098 0.68232 0.70796 

A12-TNK 0.00223 0.00535 0.00583 0.002470 0.002603 0.002336 

A13-OSY 0.40935 0.47911 0.54839 0.84108 0.75347 0.48552 

A14-

CONSTR 
0.019822 0.023928 0.02473 0.022508 0.02308 0.021149 
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Figure 5. 7 shows the results of all algorithms: NSGA-II, NSDSC, NS-DSDSC, hybrid 

NSDSC with NSGA-II, Big population Hybrid NSDSC with NSGA-II and Multitasking 

on MOO using Spacing Metric on tested problems 

 

Table 5. 7 shows the results of all algorithms: NSGA-II, NSDSC, NS-DSDSC, hybrid 

NSDSC with NSGA-II, Big population Hybrid NSDSC with NSGA-II and Multitasking 

on MOO using Spread Metric on tested problems 

Function 

name 
NSGA-II NSDSC 

NS-

DSDSC 

Hybrid 

NSDSC 

with 

NSGA-

II 

Big pop+ 

Hybrid 

NSDSC 

with 

NSGA-II 

Multitasking 

on MOO 

A1-BNH 0.57437 0.52413 0.46573 0.52238 0.52768 0.52539 

A2-ZDT1 0.97834 0.7774 1.0127 1.2227 0.65725 0.64806 

A3-KUR 0.45015 0.57234 0.39988 0.42236 0.45985 0.46585 

A4-SCH 0.28069 0.39845 0.35037 0.27786 0.29091 0.28365 

A5-ZDT2 0.43246 1.3254 1.2223 0.32853 0.31169 0.37805 

A6-FON 0.34146 0.23984 0.28528 0.35334 0.33519 0.35057 

A7-ZDT3 0.39718 1.3466 1.2837 0.44075 0.38896 0.3832 

A8-ZDT4 0.34949 1.2705 1.2446 0.85432 0.73496 0.35609 

A9-ZDT6 0.38055 0.86746 0.89461 0.34829 0.41941 0.37613 

A10-BNH 

constraint 

0.5256 0.49571 0.46664 0.46888 0.48215 0.46803 

A11-SRN 0.38891 0.41285 0.3247 0.3758 0.35875 0.36303 

A12-TNK 0.30347 0.95284 1.0387 0.35513 0.38185 0.32494 

A13-OSY 0.622 0.81751 0.75041 0.92576 0.88962 0.79495 

A14-

CONSTR 

0.59736 0.7129 0.74199 0.57323 0.68624 0.68886 
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Figure 5. 8 shows the results of all algorithms: NSGA-II, NSDSC, NS-DSDSC, hybrid 

NSDSC with NSGA-II, Big population Hybrid NSDSC with NSGA-II and Multitasking 

on MOO using Spread Metric on tested problems 

 

Table 5. 8 shows the results of all algorithms: NSGA-II, NSDSC, NS-DSDSC, hybrid 

NSDSC with NSGA-II, Big population Hybrid NSDSC with NSGA-II and Multitasking 

on MOO using DeltaP Metric on tested problems 

Function 

name 
NSGA-II NSDSC 

NS-

DSDSC 

Hybrid 

NSDSC 

with 

NSGA-II 

Big_pop+ 

Hybrid 

NSDSC 

with 

NSGA-II 

Multitasking 

on MOO 

A1-BNH 0. 34662 0.34985 0.3629 0.34194 0.32173 0.34156 

A2-ZDT1 0. 008686 0.11187 0.075271 0.015551 0.19639 0.017231 

A3-KUR 0.020047 0.0714 0.025259 0.02083 0.020674 0.019964 

A4-SCH 0.008523 0.01038 0.010953 0.008202 0.009442 0.0091038 

A5-ZDT2 0.002551 0.35667 0.38423 0.002716 0.006715 0.0023735 

A6-FON 0.002587 0.002620 0.002826 0.002642 0.002555 0.0027975 

A7-ZDT3 0.002910 0.26306 0.1088 0.003488 0.004524 0.0028701 
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Function 

name 
NSGA-II NSDSC 

NS-

DSDSC 

Hybrid 

NSDSC 

with 

NSGA-II 

Big_pop+ 

Hybrid 

NSDSC 

with 

NSGA-II 

Multitasking 

on MOO 

A8-ZDT4 0.002412 0.50553 0.50219 0.14408 0.13818 0.0033684 

A9-ZDT6 0.002648 0.34736 0.40755 0.007098 0.002756 0.0024873 

A10-BNH 

constraint 
0.27149 0.24575 0.27119 0.25027 0.26853 0.26796 

A11-SRN 0.54692 0.52435 0.54241 0.56506 0.55087 0.54289 

A12-TNK 0.002017 0.004913 0.007407 0.002097 0.002185 0.0021155 

A13-OSY 0.47384 2.1352 1.9782 5.3141 1.9908 0.89448 

A14-

CONSTR 
0.012319 0.01357 0.013106 0.012023 0.013997 0.012662 

 

 

Figure 5. 9 shows the results of all algorithms: NSGA-II, NSDSC, NS-DSDSC, hybrid 

NSDSC with NSGA-II, Big population Hybrid NSDSC with NSGA-II and Multitasking 

on MOO using DeltaP Metric on tested problems 

0

2

4

6

8

10

12

14

P
1

-B
N

H

P
2

-Z
D

T1

P
3

-K
U

R

P
4

-S
C

H

P
5

-Z
D

T2

P
6

-F
O

N

P
7

-Z
D

T3

P
8

-Z
D

T4

P
9

-Z
D

T6

P
1

0
-B

N
H

 w
it

h
…

P
1

1
-S

R
N

P
1

2
-T

N
K

P
1

3
-O

SY

P
1

4
-C

O
N

ST
R

Multitasking

Big_pop+ Hybrid NS-
DSC with NSGAII

Hybrid NS-DSC with
NSGAII

NS-DSDSC

NS-DSC

NSGAII



Aisha Younus                                  New Algorithms for Multi-objective Optimization …Chapter 5 

 105 

 

5.6 The scalarization function as a quality indicator for MOO 

algorithms 

An important question regarding various MOO algorithms is how far are the 

generated solutions from the true Pareto front. To answer this question, many authors 

have constructed and used different Quality Indicators (QIs) to measure the distance 

between solutions generated by the MOO and true Pareto optimal solutions. A 

comprehensive survey of quality indicators is given in [112].  

The quality indicators defined above in Section 2.5 require the knowledge of the true 

Pareto front PF or at least some elements of it. However, when we apply some numerical 

algorithm to solve an MOO problem, we usually do not know what the exact Pareto 

optimal solutions are. The authors of [112] write in (Section 4.4.2): “A reference set 

representing the Pareto front is needed in many QIs, such as IGD, the unary ϵ-indicator, 

and the relative HV (i.e., hyperarea ratio Van Veldhuizen (1999)). Ideally, such a 

reference set is expected to consist of sufficient points that are distributed uniformly and 

densely on the Pareto front. This, though, is not feasible in most cases. A practical 

alternative is to use the collection of the solution sets under consideration as the reference 

set. However, this common practice may come with two issues. First, whenever new 

solution sets are included in the comparison, the reference set needs to be reconstructed. 

And more importantly, such a collection of the sets may not well represent the Pareto 

front, and consequently the QI could return inaccurate results.”  

Here we propose a new quality indicator which does not require knowledge of the 

Pareto front. This indicator is defined as the scalarization function s which is described 

below. This new scalarization function was introduced in [113] and applied to some 

MOO problems in [111].  

Let                    be a locally Lipschitzian mapping (see [113]). Suppose  

that we want to solve the following MOO problem:  

 minimize         subject to                        (1) 

A point  ̅     is called a weak Pareto minimizer for problem (1) if there exists no 

     such that  
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   (x) <   ( ̅) for all i ϵ I : ={1,…,p}.  

It is known (see [111]) that, if  ̅ is a weak Pareto minimizer for problem (1), then 

there exists a vector                  such that:  

                ∑                  ∑              ̅ . (2) 

where       ̅  the generalized gradient of    at  ̅ in the sense of F.H. Clarke [114].  

We say that a point  ̅    n is a weak Pareto stationary point for problem (1) if there 

exists a vector         satisfying condition (2). 

We now define the scalarization function                as follows: 

       (              ),      (3) 

where        is the Euclidean distance from a point x to a set A (see [113]), and “co” 

denotes the convex hull. 

 It can also be proved (see [113], Proposition 3) that  ̅ is a weak Pareto stationary 

point for problem (1) if and only if         

Let us now describe how the function s can be used as a performance indicator. 

Suppose that some algorithm has generated a point x as a possible solution of problem 

(1). Then the value s(x) gives some information about how far is x from the set of Pareto 

optimal solutions. The points x with        can be considered as “good” solutions 

(although they are not necessarily Pareto optimal points), whereas        means that x 

is separated from the set of Pareto points by some positive distance. In fact, in this case, 

s(x) is a measure of “unfulfillment” of the necessary optimality conditions (2). 

Computing the value s(x)  for the general case as in formula (3) is difficult but, for 

two optimality criteria and continuously differentiable f, there exists another formula that  

much simpler, see (4) below. 

Let     be the number of objectives and suppose that the mapping           

is continuously differentiable on  n. Then a representation of the scalarization function s 

can be found in terms of the gradients     and     [113]: 

                            . (4) 
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where the gradients can be computed by some symbolic computation package, and d is 

the distance function as in (3). 

It is shown in [113] that the following formula can be used for computing  : 

      ,

                                      
                       
                              

 (5) 

where                   is a line direction and           is a point on 

the line  

Below we present several examples of two-objectives unconstrained problems, 

where we first use some MOO evolutionary algorithms to generate a population of 

possible solutions, and then evaluate each of them by computing the values of s. 

In our thesis we have used the IGD Metric, GD Metric, HV Metric, Spacing 

Metric, Spread Metric and DeltaP Metric, for all five new algorithms (ND-DSC, 

NSDSDSC, Hybrid NSDSC with NSGA-II, first big population with Hybrid NSDSC 

with NSGA-II and the last algorithm Multitasking on MOO). Also we have  used a new 

metric that is      scalarization function, The results are shown in Chapter 5, we have 

tested all 5 algorithms on 14 multi-objectives problems. 

The evolvement of novel multi-objective optimization algorithms has 

significantly increased during the past few years. To evaluate the fineness of Pareto front 

approximations generated by these algorithms, numerous performance measures have 

been established. In [86] the authors review 63 performance indicators that have been 

divided into four groups based on: cardinality, convergence, distribution, and spread. 

Also applications for these indicators are discussed [86]. Due to the fact that conflicting 

objectives are given, the Pareto set, or set of solutions, is defined as the collection of best 

decision vectors that correspond to the best trade-off points in the objective space.   

Important for the evaluation of stopping criteria, the comparison of algorithms, or 

even the creation of multi-objective optimization techniques, a Pareto set approximation 

should meet the criteria listed in [115]: 
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• The Pareto front and its representation in the objective space should be as close 

as possible. 

• It is preferred that the points of the associated approximated front have a good 

(by some metric) distribution in the objective space. 

• The extent of the obtained nondominated front should be maximized, i.e., for 

each objective, a wide range of values should be covered by the nondominated 

solutions.  

In our thesis, we have used the NSGA-II as a standard method to measure the 

performance of all our methods with drawing of true Pareto front, and the time in seconds 

was the measure of the speed to access the Pareto solution. 

 

5.7 Application of a new metric       

In this thesis, we use a new metric      to measure the efficiency of an algorithm, 

or the efficiency of solutions on a Pareto front. This concept was taken from the 

scalarization method described in [111]. We apply as a sample of unconstrained problems 

(SCH and FON) and a sample of constrainted problems (BNH and SRN) on this metric 

by using two algorithms first one is NSGA-II and the second algorithm is Multi-tasking 

on MOO algorithm 

We found  Also we apply as on this metic the results that were taken from the first 

nondominated front obtained by the NSGA-II algorithm and the Multitasking on MOO 

algorithm. When the result is       , the point x is a weak Pareto stationary point. This 

metric is considered as a new measure to know the efficiency of points on the Pareto 

front [11], NSGA-II often incorporates constraint handling by assigning a penalty to 

infeasible solutions. This penalty, which is based on the scale of the constraint violation, 

permits unfeasible solutions to be "ranked" lower than feasible ones [5]. 

In NSGA-II there special procedure which give lower rank of infeasible 

chromosomes which don’t satisfy the constraints, so these chromosomes will not be 
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allowed to create new population. Therefore in our work the function     , which was 

constructed for unconstrained problems, is also used for constrained problems.  

 Tables 5.9 and 5.10 illustrate a sample of results (20 chromosomes) got from 

applying      on the SCH problem by using the NSGA-II and Multitasking on MOO 

algorithms, respectively. The SCH problem has one variable.  

Table 5. 9 shows the results of applying      on SCH problem using NSGA-II algorithm 

No. x1 f1 f2 front Sx 

1 0.000351460 1.2352447e-07 3.99859428 1 0 

2 0.011288425 0.0001274285 3.95497372 1 0 

3 0.022222346 0.0004938326 3.91160444 1 0 

4 0.032691999 0.0010687668 3.87030076 1 0 

5 0.042674786 0.0018211373 3.83112199 1 0 

6 0.050893483 0.00259014670 3.79901621 1 0 

7 0.062960296 0.00396399889 3.75212281 1 0 

8 0.071358688 0.00509206242 3.71965730 1 0 

9 0.085939295 0.007385562551 3.66362837 1 0 

10 0.094248304 0.008882742981 3.63188952 1 0 

11 0.101997081 0.010403404727 3.60241507 1 0 

12 0.112916415 0.012750116827 3.56108445 1 0 

13 0.118562698 0.014057113560 3.53980631 1 0 

14 0.132227544 0.017484123584 3.48857394 1 0 

15 0.138783261 0.019260793688 3.464127747 1 0 

16 0.148228161 0.021971587978 3.429058940 1 0 

17 0.155743713 0.024256104171 3.401281251 1 0 

18 0.162774168 0.026495429961 3.375398755 1 0 

19 0.173907638 0.030243866658 3.334613313 1 0 

20 0.185772220 0.034511318072 3.291422434 1 0 
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Table 5. 10 shows the results of applying      on SCH problem using Multi-tasking on 

MOO algorithm 

No. x1 f1 f2 front Sx 

1 -0.002667938 7.1178944e-06 4.01067887082 1 2.605e-05 

2 0.00552586 3.0535120e-05 3.97792708449 1 0 

3 0.01495059 0.00022327 3.94042113073 1 0 

4 0.02360917 0.00055739 3.90612067409 1 0 

5 0.03592094 0.001290314 3.85760653881 1 0 

6 0.04447931 0.001978409 3.82406116907 1 0 

7 0.05386822 0.002901782 3.78742888018 1 0 

8 0.06971584 0.004860299 3.72599691571 1 0 

9 0.07194611 0.005176245 3.71739161065 1 0 

10 0.08688943 0.007549775 3.65999203891 1 0 

11 0.10470221 0.010962553 3.59215369455 1 0 

12 0.11485404 0.013191455 3.55377516067 1 0 

13 0.12553033 0.015757962 3.51363578138 1 0 

14 0.13997856 0.019593998 3.45967974741 1 0 

15 0.16158902 0.02611102 3.37975490916 1 0 

16 0.16972261 0.028805762 3.34991534700 1 0 

17 0.17965961 0.032277572 3.31363916952 1 0 

18 0.19117095 0.036546334 3.27186251258 1 0 

19 0.20249460 0.04100406 3.23102565672 1 0 

20 0.21178612 0.044853365 3.19770883559 1 0 

 

Tables 5.11 and 5.12 illustrate the results of applying      on FON problem using 

NSGA-II and Multitasking on MOO algorithms respectively, where FON problem has 

three variables. 
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Table 5. 11 shows the results of applying      on FON problem using NSGA-II 

algorithm 

No. x1 x2 x3 f1 f2 front Sx 

1 -0.57733 -0.57714 -0.57733 0.981674 4.58E-08 1 0.000315 

2 -0.57528 -0.56319 -0.5615 0.980285 0.000456 1 0.021467 

3 -0.43382 -0.46246 -0.42423 0.955258 0.055639 1 0.067166 

4 -0.41611 -0.4657 -0.47437 0.958457 0.047885 1 0.104149 

5 -0.39638 -0.32374 -0.35877 0.928383 0.134846 1 0.143547 

6 -0.39492 -0.44716 -0.38598 0.946223 0.083192 1 0.118086 

7 -0.37595 -0.37057 -0.36115 0.931992 0.121958 1 0.028931 

8 -0.36385 -0.41912 -0.47347 0.949362 0.078183 1 0.193076 

9 -0.27527 -0.20651 -0.21439 0.8603 0.302681 1 0.200501 

10 -0.1785 -0.18122 -0.18353 0.821951 0.375676 1 0.015117 

11 -0.1566 -0.1656 -0.13222 0.796918 0.419991 1 0.110763 

12 -0.15472 -0.15773 -0.20728 0.815833 0.388384 1 0.180647 

13 -0.14318 -0.0639 -0.13589 0.762853 0.476399 1 0.303184 

14 -0.14186 -0.22614 -0.22389 0.835499 0.354634 1 0.278706 

15 -0.13985 -0.08044 -0.13181 0.76542 0.471039 1 0.221413 

16 -0.13061 -0.10295 -0.14918 0.775047 0.455541 1 0.156647 

17 -0.03016 -0.04616 0.031969 0.651902 0.614361 1 0.31777 

18 -0.01067 0.062989 -0.02335 0.621365 0.645863 1 0.359716 

19 0.034846 0.039613 0.053326 0.576022 0.684369 1 0.072595 

20 0.043676 0.061689 0.068685 0.5549 0.702221 1 0.09633 
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Table 5. 12 shows the results of applying      on FON problem using Multitasking on 

MOO algorithm 

No. x1 x2 x3 f1 f2 front Sx 

1 -0.576906 -0.576907 -0.577233 0.9816418 4.06537e-07 1 0.0005335 

2 -0.522932 -0.546195 -0.553145 0.976505 0.0045076 1 0.0463913 

3 -0.504056 -0.498587 -0.535174 0.9716972 0.0132654 1 0.0598216 

4 -0.475604 -0.490064 -0.518223 0.9682025 0.0212381 1 0.0672860 

5 -0.475450 -0.489065 -0.461521 0.9640233 0.0311002 1 0.0439404 

6 -0.448169 -0.429658 -0.440496 0.9550305 0.0556224 1 0.0314293 

7 -0.442763 -0.401336 -0.516407 0.9590238 0.0514383 1 0.1934738 

8 -0.441041 -0.470334 -0.499214 0.9628858 0.0354925 1 0.0936319 

9 -0.431677 -0.449917 -0.501561 0.9607368 0.0422835 1 0.1184536 

10 -0.427386 -0.381084 -0.476388 0.9520913 0.0687268 1 0.1648334 

11 -0.419576 -0.407296 -0.337380 0.9391975 0.1054156 1 0.1653640 

12 -0.415122 -0.370541 -0.471024 0.9493385 0.0772462 1 0.1771907 

13 -0.411179 -0.405155 -0.406778 0.9455797 0.0827344 1 0.0111522 

14 -0.392376 -0.373291 -0.421289 0.9416542 0.0953530 1 0.0885834 

15 -0.386724 -0.373104 -0.442873 0.9435082 0.0916618 1 0.1343623 

16 -0.383648 -0.399240 -0.359263 0.9363588 0.11024148 1 0.0760718 

17 -0.381780 -0.334202 -0.385825 0.9313386 0.12545355 1 0.1115207 

18 -0.380040 -0.392890 -0.346846 0.9336030 0.11846300 1 0.0911088 

19 -0.374554 -0.439010 -0.399659 0.9446268 0.0877470 1 0.1171867 

20 -0.3706262 -0.40142527 -0.35080168 0.93400175 0.11751076 1 0.092719 

 

Tables 5.13 and 5.14 illustrate the results of applying      on constrained BNH 

problem using NSGA-II and Multitasking on MOO algorithms respectively, where BNH 

problem has two variables. 
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Table 5. 13  shows the results of applying      on BNH constrained problem using 

NSGA-II algorithm 

No. x1 x2 f1 f2 front Sx 

1 7.43659964e-05 1.715217e-05 2.3297994e-08 49.999084824 1 0 

2 0.01597180576 0.02879349376 0.00433665545 49.553431168 1 0 

3 0.06249870813 0.02356568552 0.01784572021 49.143817493 1 1.11022e-16 

4 0.04027674237 0.05803763457 0.01996233201 49.021846813 1 0 

5 0.09143958217 0.06995541177 0.05301982730 48.399305017 1 2.2204e-16 

6 0.09775907196 0.10255881040 0.08030058297 48.016896322 1 0 

7 0.10848420787 0.13213833510 0.11691745185 47.623003933 1 2.220446e-16 

8 0.08064094282 0.20627615859 0.19621126106 47.179881801 1 0 

9 0.146089687315 0.19327495846 0.23478962523 46.665050948 1 0 

10 0.19603752848 0.17113589661 0.27087283073 46.395983956 1 0 

11 0.16329901784 0.25040344442 0.35747381683 45.952343831 1 0 

12 0.16082371572 0.26089519122 0.37572227338 45.876741498 1 4.44089e-16 

13 0.23576710642 0.23217327579 0.43796223386 45.430086736 1 0 

14 0.26452830269 0.25077620305 0.53145570777 44.979818869 1 0 

15 0.33279033127 0.24239433554 0.67801767396 44.417657750 1 8.881784e-16 

16 0.32262540041 0.35556961221 0.92206759248 43.448566771 1 0 

17 0.29589438179 0.47663303622 1.25893014561 42.589458356 1 0 

18 0.43711062762 0.37191493665 1.31754568356 42.239130778 1 0 

19 0.44407491889 0.39521888482 1.41360200205 41.960462463 1 8.88178e-16 

20 0.45938525327 0.42641123514 1.57144540953 41.534896468 1 0 
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Table 5. 14 shows the results of applying      on BNH constrained problem using Multi-

tasking on MOO algorithm 

No. x1 x2 f1 f2 
fron

t 
Sx 

1 1.45484e-05 1.3887019e-06 8.54344092e-10 49.9998406 1 0 

2 0.0016300034 0.087792231 0.030840531605 49.11348758694 1 0 

3 0.0205881350 0.0125138119 0.002321867171 49.6695609970 1 0 

4 0.0960152516 0.0505391919 0.047092553885 48.5462287023 1 0 

5 0.1247673115 0.4045607339 0.716945077869 44.885955814 1 4.44089e-16 

6 0.137576608 0.1687778019 0.189653078301 46.983869167 1 0 

7 0.143261675 0.1168269805 0.136689804192 47.433285890 1 8.88178e-16 

8 0.190240432 0.2028111275 0.309295101882 46.146808178 1 4.44089e-16 

9 0.195845508 0.2121598447 0.333469051934 46.003313728 1 0 

10 0.2038462791 0.2451994581 0.406704319220 45.611218706 1 8.88178e-16 

11 0.2540274942 0.2528542870 0.513861033203 45.05964744557 1 0 

12 0.2627115143 0.2042004896 0.442860718843 45.44159514 1 8.8817e-16 

13 0.2633428071 0.3689690542 0.821950388379 43.88236898 1 0 

14 0.3142024868 0.3839168761 0.984461482342 43.26492173 1 8.88178e-16 

15 0.3158034185 0.2920813871 0.740173343496 44.10619527 1 0 

16 0.3230037645 0.4298573223 1.156434997783 42.76049788 1 0 

17 0.3628354955 0.4682001009 1.403443725415 42.04050496 1 0 

18 0.3648345314 0.4413610264 1.311615164033 42.26594821 1 0 

19 0.368413932 0.3079113903 0.922152999518 43.46728502 1 0 

20 0.4119860808 0.4692248273 1.559617877537 41.57779538 1 0 

 

Tables 5.14 and 5.15 illustrate the results of applying    on FON problem using 

NSGA-II and Multitasking on MOO algorithms respectively, where FON problem has 

three variables. 
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Table 5. 15 shows the results of applying      on SRN constrained problem using 

NSGA-II algorithm 

No. x1 x2 f1 f2 front Sx 

1 -2.17532663922 3.02291879082 23.5255529785 -23.6701401873 1 8.8817e-16 

2 -2.26078458006 3.01951023645 24.2327068328 -24.4254828157 1 8.8817e-16 

3 -2.26440437173 3.20321517791 25.0393018117 -25.2337965142 1 8.8815e-16 

4 -2.20276555883 3.48006283082 25.8139499873 -25.9756016743 1 0 

5 -2.35658710759 3.30232391794 26.2805466491 -26.5099793914 1 8.8817e-16 

6 -2.73604590983 2.57728612849 26.9179623912 -27.1122447196 1 0 

7 -2.42400005761 3.53114314155 27.9784621127 -28.2226861215 1 4.4408e-16 

8 -2.21387591011 4.10438123963 29.3939330668 -29.5620660720 1 0 

9 -2.79093205015 3.35091220585 30.4798181088 -30.6451766510 1 0 

10 -2.73739192369 3.64262241198 31.4263354510 -31.6199805256 1 0 

11 -2.14727227977 4.59848221191 32.1489415920 -32.2745247474 1 0 

12 -2.73203972947 4.08915189588 33.9350594375 -34.1312170011 1 0 

13 -2.00810526169 5.27633692409 36.3519652772 -36.3600048436 1 0.44732615 

14 -2.57944380482 4.75293769616 37.0558469128 -37.2995355964 1 2.2201e-16 

15 -2.17371868764 5.26953588484 37.6488643555 -37.7924048607 1 0.19163439 

16 -2.24851303656 5.31787544419 38.6939113733 -38.8806656806 1 0.13872481 

17 -2.45028672459 5.19367200607 39.3919368257 -39.6394654159 1 1.1102e-16 

18 -2.31463266915 5.54257973675 41.2510857345 -41.4667246871 1 0 

19 -2.54048859062 5.43121426741 42.2516965252 -42.5000571993 1 2.775559e-17 

20 -2.54081997842 5.56937881152 43.4982687996 -43.7466025289 1 0 
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Table 5. 16 shows the results of applying      on SRN constrained problem using Multi-

tasking on MOO algorithm 

N

o. 
x1 x2 f1 f2 front Sx 

1 -3.28133668 14.44209436 210.5824179 -210.221930 1 0 

2 -3.09060112 12.20775727 153.5280428 -153.429233 1 0 

3 -3.08810730 11.74117557 143.2616886 -143.165818 1 1.7763e-15 

4 -3.05102502 2.58698121 30.03136318 -29.9777346 1 0 

5 -3.03295295834 9.79714757489 104.720420935 -104.686382 1 0 

6 -3.01841492953 14.6897359975 214.593360086 -214.574606 1 0 

7 -3.00513797349 13.3888119074 180.534066610 -180.528902 1 0 

8 -2.96968183766 14.6330670212 212.558253972 -212.587652 1 0 

9 -2.95052481675 14.6853161990 213.795575428 -213.842602 1 0 

10 -2.93428441472 6.23532539001 53.7557946247 -53.8171916 1 0 

11 -2.926485175 12.57841144 160.3298677 -160.397978 1 0 

12 -2.923524624 12.30542674 154.0537685 -154.124395 1 0 

13 -3.28133668 14.44209436 210.5824179 -210.221930 1 0 

14 -3.09060112 12.2077574 153.5280428 -153.429233 1 0 

15 -3.08810730 11.74117557 143.2616886 -143.165818 1 0 

16 -3.05102502 2.586981214 30.03136318 -29.9777346 1 0 

17 -3.03295295 9.797147574 104.7204209 -104.686382 1 0 

18 -3.01841492 14.68973599 214.5933600 -214.574606 1 0 

19 -3.00513797 13.38881190 180.5340666 -180.528902 1  

20 -2.969681837 14.63306702 212.5582539 -212.5876529 1 0 

 

We found that the results was taken form Pareto front of algorithms NSGA-II and 

Multitasking on MOO reached to zero value for    ) in unconstraint test problems (SCH, 

FON), and constraint test problems (BNH, SRN). 

This indicates that this measure      is considered as a new measure for 

measuring the efficiency of solutions on approximate of Pareto front.   
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5. 7 Conclusions 

In this chapter, we have used a new algorithm called Multitasking on MOO, 

which includes the idea of combining single-objective and multi-objective optimization 

to solve problems, so the algorithm has worked to solve the MOO problems by dividing 

the problem into several tasks. So if we have two objective functions, the first task solves 

the first objective problem and the second task solves the second objective problem as a 

SOO, then put the first best three chromosomes for task 1 and best three chromosomes 

for task 2 in the first quarter of population and generate randomly 10% of population and 

put it in second quarter, while the third task is used to solve the first and second objective 

problems as MOO. These tasks are applied for first 10% of generations, then we use 

NSGA-II. 

The results showed that the Multitasking on MOO algorithm was very effective and 

outperformed NSGA-II in some problems. 

We also used in this chapter a new metric    ) that proved its ability in measuring 

the efficiency of the solutions resulting from two algorithms: Multitasking on MOO and 

NSGA-II on SCH and FON problems. Also, this metric    ) is considered a new addition 

to the existing performance measures. 
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CHAPTER SIX: Conclusions 

In this thesis, two new algorithms called Non-dominated Sorting with 

Dissimilarity and Similarity of Chromosomes (NSDSC) and Non-dominated Sorting with 

Dynamic Schema Dissimilarity and Similarity of Chromosomes (NS-DSDSC) are 

introduced. In these algorithms, we used DSC and DSDSC instead of GA to find the best 

solutions. 

With problems that have 1, 2, 3, or 6 variables, we noticed that our previous 

suggested algorithms (NSDSC, NS-DSDSDC) perform well but, with problems that 

have 10 or 30 variables, these algorithms didn't reach the Pareto front. 

We noticed that the two new algorithms (NSDSC and NS-DSDSC( did not reach 

the optimal solution in some of problems (A2-ZDT1, A5-ZDT2, A7-ZDT, A8-ZDT4, 

A9-ZDT6),  but they were faster in reaching the optimal solution in the rest of the 

problems (A1-BNH,A3-KUR, A4-SCH, A6-FON, A10-BNH with constraint, A11-

SRN, A12-TNK, A13-OSY, A14-CONSTR). 

In the problems (A1 to A14) mentioned above, that reached the optimal solutions, 

we found that the optimal solutions of the two new algorithms NSDSC and NS-DSDSC 

matched the optimal solutions of the NSGA-II algorithm. 

Also in this thesis, we used the concept of hybridization to obtain optimal solutions, 

hybridization has many advantages, the most important one, which is the integration of 

benefits and the elimination of defects, thus the good design for hybrid algorithms 

enables one to reach best solutions (Pareto front) faster than the original algorithms. So, 

we presented two hybrid algorithms: Hybrid NSDSC with NSGA-II and First Big 

population with Hybrid NSDSC with NSGA-II algorithm. 

When we tested the first two algorithms NSDSC, NS-DSDSC  Hybrid NSDSC 

with NSGA-II on the 14 problems listed in Appendix A, we found that hybrid algorithms 

performed better, especially for the problems A2-ZDT1, A5-ZDT2, A7-ZDT, A8-ZDT4 

and A9-ZDT6 for which the NSDSC and NS-DSDSC algorithms have found difficulties 

to reach optimal solutions. 
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Specifically, for A8-ZDT4, we have not obtained a good solution, but when the 

number of iterations is increased (2000 big pop, 50 iterations in NSDSC, and 450 in 

NSGA-II), the First Big population with Hybrid NSDSC with NSGA-II algorithm 

performs better than NSGA-II. Moreover, hybrid algorithms have significantly shorter 

run times than NSDSC, NS-DSDSC, and NSGA-II. 

Finally using a novel algorithm called Multitasking on MOO, which involves the 

concept of mixing single-objective and multi-objective problems, we found that this 

algorithm had the ability to solve the MOO problems by breaking them up into smaller 

tasks. 

In our work, we have used seven efficiency metrics IGD, GD, HV, Spacing, 

Spread, DeltaP and      metric, we found that Multitasking on MOO algorithm 

outperformed NSGA-II and other algorithms from Chapters 3 and 4. 
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Appendix A: Minmiztion Test Functions  

Unconstrained problems 

 

A.1 Binh and Korn function (BNH) (P1) 

           
        

    

                      

 

where         ,         ,  this function is convex, the number of 

variables is 2.          

 

A.2 Zitzler–Deb–Thiele's function N. 1 (ZDT1) 
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where                        ,  the optimal solution is         , 

 i            , this function is convex.     

 

A.3 Kursawe function 
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where   i                  , this function is non-convex , number of 

variables is 3.          

 

 

https://en.wikipedia.org/w/index.php?title=Binh_and_Korn_function&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Kursawe_function&action=edit&redlink=1
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A.4 Schaffer function N. 1 (SCH)  

              

                 
where             this function is convex, the number of variables is 1.   

 

 

A.5 Zitzler–Deb–Thiele's function N. 2  (ZDT2) [9] 

           

                                

          (∑        

 

   

) 

where                        , the optimal solution is    
     ,  i            , this function is non-convex.          

 

A.6 Fonseca–Fleming function (FON) 
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where              this function is non-convex, number of variables is 3. 

 

A.7 Zitzler–Deb–Thiele's function N. 3 (ZDT3) 
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)              +  
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)         

 

where                        ,  the optimal solution is    

     ,  i            , this function is convex and disconnected, i.e. the 

Pareto front is not continuous . 

https://en.wikipedia.org/w/index.php?title=Fonseca%E2%80%93Fleming_function&action=edit&redlink=1
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A.8 Zitzler–Deb–Thiele's function N. 4 (ZDT4) 
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where                                 ,  the optimal solution 

is         ,  i            , this function is non-convex.   

 

A.9 Zitzler–Deb–Thiele's function N. 6 (ZDT6) 

                            
                            

          (∑      

 

   

) 

 

where                       ,  the optimal solution is         , 

 i            , this function is non-convex. 
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Constrained problems 

 

A.10 Binh and Korn function (BNH) with constraint  [116] 

Minimize 

            
         

   

                      

subject to  

                 
      

                              
This function has 2 variables.       
 

 

A.11 SRN [117] 

Minimize 

                        

                   

Subject to:  

       
    

     ; 

                    

This function has 2 variables.   
 

 

A.12 TNK  

Minimize 

         

         

           Subject to:   

      
    

                     
  

  

   

                       ; 

 

where            , the function has 2 variables.   

https://en.wikipedia.org/w/index.php?title=Binh_and_Korn_function&action=edit&redlink=1
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A.13 OSY [24] 

Minimize 

                                                                  

         
      

      
      

      
      

   

Subject to: 

                

      =6-        ; 

                 

                  

                      

                      

where                                ,  the function has 6 variables. 

 

A.14 CONSTR function 

Minimize 

          

                    

     Subject to: 
         =   +9*   6 
                     

 

where                      , the function has 2 variables. 
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