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Description

1. INTRODUCTION

My research is devoted to the theory of curves in algebraic surfaces and I am working on
three important problems in this area, namely

• the bounded negativity conjecture,
• constructions of very singular curves in algebraic surfaces, especially in the complex

projective plane,
• variations on Terao’s freeness conjecture and the notion of free and nearly-free re-

duced plane curves.
Let us present a general introduction to the subjects indicated above - we try to keep an
informal style in order to provide main motivations and ideas standing behind that. In the
report, we will use standard notations, mostly captured from [10, 23]. We work primarily
over the complex numbers - some results and definitions can be formulated for an arbitrary
field and we will emphasize this features directly in the text.

1.1. Bounded Negativity. We assume that every surface X is normal and projective. We
say that a curve C ⊂ X is negative if C is irreducible and reduced with C2 < 0. The
theory of curves in algebraic surfaces is a classical subject of algebraic geometry. This theory
develops in many directions, one of them can be connected with the notion of the positivity
(via Seshadri constants), but on the other hand, we still know very little about the negativity
of algebraic curves. One of the most fundamental information about the way a curve is
embedded into a surface is its self-intersection. At the beginning of the 20th century, the
Italian School of Algebraic Geometry, probably in the person of F. Enriques, formulated the
following conjecture, cf. [3].

We say that X has bounded negativity if there exists b(X) ∈ Z such that for every irre-
ducible and reduced curve C one has C2 ≥ −b(X).

Conjecture 1.1. (BNC) Every surface X in characteristic 0 has bounded negativity.

Remark 1. The BNC is obviously false in positive characteristic. Consider X = C × C,
where C is a curve of genus g(C) ≥ 2 defined over a field of characteristic p > 0. Let Γn be
the graph in X of the n-th Frobenius morphism. We have

Γ2
n = pn(2− 2g(C))

and since n can be arbitrarily large, then X does not have bounded negativity.

It is known that some simple types of surfaces have bounded negativity.

Proposition 1.2. ([18, Corollary 1.2.3]) A surface X has bounded negativity if −mKX is
effective for some positive integer m.

In particular, we know that the blow-up of the complex projective plane Xr along r ∈
{1, ..., 9} (very) general points has the bounded negativity property - all negative curve are
exactly (−1)-curves. However, it is not clear that the blowing up of P2

C along 10 (very)
general points has the bounded negativity property. It is worth emphasizing right now that if
we do not require that configurations of points are (very) general, then the problem is getting
more and more complicated, but also very interesting. Consider now an arrangement of 5
general lines in P2

C, these lines intersect along 10 double intersection points. If we take the
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blowing up X ′
10 of P2

C along 10 double intersection points, then −KX′
10

is big. Recall that
if X is a complex rational surface such that −KX is big, then X is a Mori Dream Surface
[35]. In particular, Mori Dream Surfaces have only finitely many negative curves, and this is
obviously our case with X ′

10.
We have several natural questions regarding the bounded negativity, except the obvious

one whether the bounded negativity conjecture holds. One of them is about its birationality.

Question 1.3. Let X and Y be birationally equivalent projective surfaces. Does the BNC
hold for X if and only if it holds for Y ? In other words: is the bounded negativity property a
birational invariant?

Let us remark here that the solution to the above problem, in characteristic zero, is not
known even if Y is the blow-up of X at a single point. In positive characteristic, by a recent
paper by Cheng and van Dobben de Bruyn published in Crelle’s journal [8], we know that
there exists an explicit sequence of blow-ups of the projective plane in positive characteristic
that contain smooth rational curves of arbitrarily negative self-intersection. Due to this rea-
son, the bounded negativity does not hold in positive characteristic even for rational surfaces
and this gives us also the negative answer to the above question. However, both the bounded
negativity conjecture and its birational invariance is still an open problem in characteristic
zero.

The first problem that we have to face is to find an accurate way to measure the negativity
for surfaces. Observe that we can easily (and artificially) construct very singular curves on
blow-ups of surfaces. For example, we can take sufficiently many s distinct points on a
smooth curve C of degree d in P2

C, then its strict transform C̃ under the blowing up along
the s points has the self-intersection equal to d2 − s, so for sufficiently many points this
self-intersection number can be very negative. In order to avoid such situations for blow-ups
of surfaces, it is natural to study the weighted self-intersection numbers, i.e., we take the
self-intersection of a given curve and divide this number by the number of points in which
we blown up our surface. This idea is quite natural since the weighted self-intersections
can be considered as a measure of the negativity with respect to the growth of the Picard
number of the resulting surface. This observation stands behind the notions of the Harbourne
constants and indices that allow to measure the local negativity of algebraic surfaces. It is
worth noticing that some authors and referees of articles suggest to call these constants as
Hadean due to the fact that it is very difficult to compute them, even for certain (sub)classes
of curves in the complex projective plane. Here we are going to define and study Harbourne
indices, mostly in order to keep the coherence of the results obtained by the applicant with
co-authors or by other authors. This notion is mostly motivated by the curve viewpoint since
it suggests focusing on singular loci rather than on arbitrary sets of points.

Let us recall that since the BNC holds for reduced curves in X if and only if the BNC
holds for irreducible and reduced curves [2, Proposition 3.8.2], we will mostly study the case
of (reduced) curve arrangements.

From now on we assume that if C ⊂ X is a singular curve, then by Sing(C) we denote the
set of singular points of C.

Definition 1.4. (Harbourne indices) Let X be a smooth projective surface and C ⊂ X a
reduced curve. Then the Harbourne index of C is defined as

h(X;C) =
C2 −

∑
P∈Sing(C) m

2
P (C)

s
,
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where s is equal to the cardinality of Sing(C) and mP (·) denotes the multiplicity of C at
P ∈ Sing(C). If C ⊂ X is a reduced curve without singular points, then h(X;C) = C2.

Similarly, we define the global Harbourne index of X as

h(X) = infC h(X,C),

where the infimum is taken over all reduced curves C ⊂ X .

Harbourne indices measure the local negativity of curves in surfaces. In particular, these
indices allow to conclude that for certain classes of curves the BNC holds on blow-ups at
singular loci of reduced curves. The above considerations present a new approach to attack
the BNC for blow-ups from an asymptotical viewpoint. Concluding this section, let us present
an extreme irreducible example.

Example 1. A result due to Severi [31] tells us that there exists an irreducible rational curve
Cd ⊂ P2

C of degree d with g := (d−1)(d−2)
2

nodes. Then it follows that

h(P2
C;Cd) =

d2 − 4 · g
g

= 2

(
−d2 + 6d− 2

d2 − 3d+ 2

)
d→∞−−−→ −2.

This example shows that we always have h(P2
C) ≤ −2. In this report we present results

providing lower-bounds on Harbourne indices for various classes of surfaces and curves. In
particular, we explain the case of curve arrangements in the complex projective plane, as-
suming that our curves have ordinary singularities, and the case of rational curves in surfaces
having trivial canonical class.

1.2. Highly singular curves. The theory of plane curve is a very classical subject which
dates back to the beginnings of the projective geometry. If we think about curves and their
combinatorial properties, our first try is to approach line arrangements in the projective plane
over a given field F. The first problem that we need to face is to collect combinatorial con-
straints that can potentially allow us to exclude the existence of certain combinatorial con-
figurations. For instance, we know that if L ⊂ P2 is an arrangement of d lines, then the
following combinatorial count holds:(

d

2

)
=

∑
r≥2

(
r

2

)
tr,

where tr denotes the number of r-fold intersection points of lines. If we take d = 7, then by
this Diophantine equation we can potentially have t3 = 7. It is natural to wonder whether we
can construct such a configuration of points and lines in the complex projective plane. It turns
out, and it was discovered years ago, that such a configuration exists if the underlying field has
characteristic 2, and if we take F = Z2 we obtain the famous Fano plane. Another question
that we can ask, and if fact this is an open problem, whether there exists an arrangement of
d = 13 lines with t3 = 26. We predict that such a configuration of points and lines cannot
exist, but we do not have a formal proof yet! Based on that small sample, it is clear that
we want to find the tightest possible constraints on the combinatorics of line arrangements
in order to decide whether a certain combinatorial data provided by the above Diophantine
equation can be geometrically realized over a given field. In the case of line arrangements,
Hirzebruch in his famous paper devoted to ball-quotient surfaces [19] provides, as a simple
by-product, the following famous inequality.
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Theorem 1.5 (Hirzebruch). Let L ⊂ P2
C be an arrangement of d ≥ 6 lines such that td =

td−1 = 0. Then one has

t2 + t3 ≥ d+
∑
r≥5

(r − 4)tr.

This result is powerful in the context of many applications, especially in the so-called
extreme problems in the geometry of points and lines. On the other hand, using only the
above inequality, we are not able to exclude the existence of a configuration with d = 13
lines and 26 triple points. This observation shows a new branch of studies, namely how to
construct reduced plane curves having prescribed singularities. It turns our that this problem
is extremely difficult and this will be visible in the course of the present document.

In our research we focus on both aspects of the game, namely we prove the so-called
Hirzebruch-type inequalities that allow us to find combinatorial constraints on certain classes
of reduced curves in surfaces. On the other hand, we also use certain methods to construct
new examples of highly singular curves. It is very natural to use symmetries - for instance the
geometry standing behind irreducible complex reflection groups, of robust properties of ram-
ified morphisms. We will present outcomes coming from these two approaches constructing
highly singular curves with very interesting properties, especially in the framework of the
bounded negativity conjecture.

1.3. On Terao’s Freeness Conjecture. Here we are going to present a short introduction
to the subject using a very classical approach. Let S := C[x, y, z] =

⊕
k Sk be the graded

polynomial ring and let f ∈ S be a homogeneous polynomial of degree d. Consider a curve
C : f = 0 in P2

C defined by f . We start our discussion looking at the most classical notation,
namely we focus on free curves. Denote by ∂x, ∂y, ∂z the partial derivatives and we define
Der(S) = {∂ := a ·∂x+ b ·∂y+ c ·∂z, a, b, c ∈ S} the free S-module of C-linear derivations
of the ring S. Now for a reduced curve C : f = 0 with f ∈ Sd being homogeneous, we
define

D(f) = {∂ ∈ Der(S) : ∂ f ∈ ⟨f⟩}.
It means that D(f) is the graded S-module of derivations preserving the ideal ⟨f⟩. We can
show that for a reduced plane curve C : f = 0 in P2

C we have the following decomposition:

D(f) = D0(f)⊕ S · δE,

where δE = x∂x + y∂y + z∂z is the Euler derivation and

D0(f) = {∂ ∈ Der(S) : ∂ f = 0},

i.e., it is the set of all C-linear derivations of S killing the polynomial f .

Definition 1.6. We say that a reduced curve C : f = 0 in P2
C defined by a homogeneous

polynomial f ∈ S is free if D(f) (or just D0(f)) is a free graded S-module.

For a homogeneous polynomial g ∈ S of degree d we define its Jacobian ideal Jg :=
⟨∂x g, ∂y g, ∂z g⟩, and we define by Ig the saturation of Jg with respect to the irrelevant ideal
m = ⟨x, y, z⟩. The Jacobian module of g is defined as

N(g) = Ig/Jg.

The Jacobian module provides an important information about the curve that is associated
with g ∈ S. One can show that the freeness of C : g = 0 boils down to the condition
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N(g) = 0. We set n(g)j = dimN(g)j , and for a reduced curve C : g = 0 in P2
C given by

g ∈ S we define the following invariants:

σ(C) = min{j : n(g)j ̸= 0} and ν(C) = max{n(g)j}j.
The invariant ν(C) is called the defect, or the freeness defect. Using the notion of the defect,
we are ready to introduce the second most important class of plane curves that we are going
to discuss here.

Definition 1.7. A reduced curve C : g = 0 in P2
C defined by a homogeneous polynomial

g ∈ S is nearly-free if ν(C) = 1.

The class of free and nearly-free curves plays an important role in the context of the Saito-
Terao’s freeness conjecture that is formulated, generally, for hyperplane arrangements in pro-
jective spaces. Here we present the planar version and due to this reason we assume here that
A is an arrangement of d lines in P2

C. Denote by L(A) its intersection lattice which is the set
of all flats, i.e., non-empty intersections of (sub)families of lines in A, with the order defined
by X ≤ Y if and only if Y ⊂ X . The intersection lattice is the most fundamental object that
can be associated with A and it decodes the whole combinatorial information attached to A.
In the 1980s, Terao in [36] asked whether the intersection lattice for line arrangements (or in
general, for hyperplane arrangements) determines the property of being free.

Conjecture 1.8 (Terao). Let A,B ⊂ P2
C be two line arrangements such that their intersection

lattices L(A), L(B) are isomorphic. Assume that A is free, then B must be free.

Notice that Terao’s freeness conjecture is widely open - we know that it holds with up to 14
lines [1], which might be disappointing. However, Terao’s conjecture is very demanding and
in order to understand this problem well one needs to understand many aspects, for instance
the geometry of moduli spaces of line arrangements which is not easy at all. It is very unclear
whether the mentioned conjecture holds in general, and based on that problem Dimca and
Sticlaru in [11] defined the class of nearly-free curves and shortly afterwards it turned out
that nearly-free curves might be crucial for Terao’s conjecture. It is believed that if there
exists a counterexample to Terao’s freeness conjecture, then we should be able to find two
line arrangements with isomorphic intersection lattices, where one arrangement is free and
the second arrangement is nearly-free. This prediction explains why free and nearly-free
curves gain a lot of attention of researchers working on plane curves. It is worth pointing out
here that there are some attempts to generalize Terao’s freeness conjecture to other classes
of reduced plane curves. It turned out that naively generalized Terao’s freeness conjecture to
conic-line arrangements in P2

C is false [32]. Let us present here this (counter)example as our
main motivation for further discussion in the section devoted to habilitation achievements.

Example 2. Consider the following conic-line arrangement

CL1 : xy · (y2 + xz) · (y2 + x2 + 2xz) = 0.

The intersection point P = (0 : 0 : 1) has multiplicity 4 and it is quasi-homogeneous
(although it is not ordinary). One can show that CL1 is free. If we perturb a bit line y = 0,
taking for instance x− 13y = 0, we obtain a new conic-line arrangement

CL2 : x · (x− 13y) · (y2 + xz) · (y2 + x2 + 2xz) = 0.

In this new arrangement, the intersection point P = (0 : 0 : 1) has multiplicity 4, but it is not
longer quasi-homogeneous, and CL2 is not free. In fact, the arrangement CL2 is nearly-free,
as defined above.
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Based on results and examples presented by Schenck and Tohaneanu in [32], our problem
boils down to understand a weaker version of the Terao’s freeness conjecture that we are
going to formulate here. In order to do so, we need to introduce the weak combinatorics of a
given plane curve C in P2

C which is adequate for our setting.

Definition 1.9. Let C = {C1, ..., Ck} ⊂ P2
C be a reduced curve such that each irreducible

component Ci is smooth. The weak combinatorics of C is a vector (d1, ..., ds; t1, ..., tp), where
di denotes the number of all irreducible components of C having degree i, and tj denotes the
number of singular points of a curve C of a given topological type Sj .

For instance, if A ⊂ P2
C is a line arrangement, then the weak combinatorics of A is

(d, t2, ..., td), where d is the number of lines and tj denotes the number of j-fold intersec-
tion points.

Conjecture 1.10 (Numerical Terao’s Conjecture). Let C1, C2 be two reduced curves in P2
C

such that all irreducible components of them are smooth. Suppose that C1 and C2 have the
same weak combinatorics and let C1 be free, then C2 is also free.

Our main result into this direction shows that Numerical Terao’s Conjecture holds for
complex conic-line arrangements in the plane admitting nodes, tacnodes, and ordinary triple
points. We will present details in the forthcoming sections.

2. HABILITATION ACHIEVEMENT

2.1. The bounded negativity conjecture versus Zariski decompositions. In this section,
we present the main result of the report, namely we show that the Bounded Negativity Con-
jecture is decoded by Zariski decompositions of pseudo-effective integral divisors (i.e., di-
visors with non-negative integer coefficients), and vice versa [Hab1]. This result is highly
unexpected since it provides a direct linkage between the negativity of curves and numerical
properties of the Zariski decomposition for surface.

The theorem on Zariski decomposition is a fundamental tool in the theory of algebraic
surfaces. It was established by Zariski [38] for effective divisors and extended by Fujita [15]
to the pseudo-effective case. The geometric significance of Zariski decompositions lies in the
fact that, given a pseudo-effective integral divisor D on X with the Zariski decomposition
D = P +N , one has for every sufficiently divisible integer m ≥ 1 the equality

H0(X,OX(mD)) = H0(X,OX(mP )) .

In other words, all sections of OX(mD) come from the nef line bundle OX(mP ). The
term sufficiently divisible here means that one needs to pass to a multiple mD that clears
denominators in P for the statement to hold. Of course, it would be most pleasant if one
knew – beforehand and independently of D – which multiple to take. This amounts to asking
the following.

Problem 2.1. Let X be a smooth projective surface. Does there exist an integer d(X) ≥
1 such that for every pseudo-effective integral divisor D the denominators in the Zariski
decomposition of D are bounded from above by d(X)?

If such a bound d(X) exists, then we say that X has bounded Zariski denominators.

Conjecture 2.2. (The Bounded Denominators Conjecture) Every smooth projective surface
X in characteristic zero has bounded Zariski denominators.



9

Let us point out here that this question was formulated by Alex Küronya in 2009, and this
problem was open until 2017.

Taking then the factorial d(X)!, one has in fact a uniform number that clears denominators
in all Zariski decompositions on X . It is an intriguing question as to whether a given smooth
surface satisfies this boundedness condition.

It turned out, somewhat surprisingly, that the boundedness of Zariski denominators is
equivalent to the bounded negativity property.

Theorem 2.3 ([Hab1]). For a smooth projective surface X over an algebraically closed field
the following two statements are equivalent:

(i) X has bounded Zariski denominators,
(ii) X has bounded negativity.

In fact, one can find strict relations between numbers d(X) and b(X) for a given surface
X .

Denominators in Zariski decompositions
Let X be a smooth projective surface and D a pseudo-effective integral divisor on X .

Fujita’s extension [15] of Zariski’s result [38] states that D can be written uniquely as a sum

D = P +N

of Q-divisors such that
(i) P is nef,

(ii) N is effective and has negative definite intersection matrix if N ̸= 0,
(iii) P · C = 0 for every component of N .

For the question of bounded denominators in P and N it is of course enough to consider the
denominators of N =

∑k
i=1 aiNi, i.e., the denominators of the coefficients ai. In order to

approach the problem, we use the following description of the coefficients ai. They are given
as the (unique) solution of the system of equations

D ·Nj = (P +
k∑

i=1

aiNi) ·Nj =
k∑

i=1

aiNi ·Nj for all j ∈ {1, . . . , k}.

This system can be rewritten in matrix form as

S[a1, . . . , ak]
t = [D ·N1, . . . , D ·Nk]

t ,

where S denotes the intersection matrix of the curves N1, . . . , Nk, i.e., S = [Ni · Nj]i,j ∈
Mk×k(Z). Since the matrix S is negative definite, it has non-zero determinant, and using
Cramer’s rule one has

(1) ai =
det[s1, . . . , si−1, b, si+1, . . . , sk]

det(S)
,

where si denotes the i-th column of the matrix S and b = [D · N1, . . . , D · Nk]
t. Thus,

for divisors with negative part N supported on N1, . . . , Nk, the denominators of the Zariski
decomposition are bounded by | det(S)|.

Remark 2. Note that the above reasoning yields an upper bound for the denominators of
the coefficients in the Zariski decomposition for any surface whose pseudoeffective cone is
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rational polyhedral, since in this case there are only finitely many possible sets {N1, . . . , Nk}
of components of negative parts, so we obtain the bound

d(X) = max{| det(Si)| | Si principal negative definite submatrix of S} ,
where S denotes the intersection matrix of all irreducible curves with negative self-intersec-
tions. It is not clear a priori whether the corresponding supremum will be finite in the presence
of infinitely many extremal rays.

Bounded denominators and bounded negativity
The main aim here is to show key ingredients of Theorem 2.3. The results below show that it
is possible to find relations between numbers b(X) and d(X) in a strict sense.

The first result provides a bound for d(X) using only information about b(X) and the
Hodge Index Theorem.

Theorem 2.4. Let X be a smooth projective surface on which the self-intersection of irre-
ducible curves is bounded by −b(X). Then X has bounded Zariski denominators. More
concretely, denoting by ρ(X) the Picard number, we have

d(X) ≤ b(X)ρ(X)−1 .

We now turn to the converse implication.

Theorem 2.5. Let X be a smooth projective surface. If Zariski denominators on X are
bounded by d(X), then X has bounded negativity. More concretely, denoting by ∆ the dis-
criminant of the Néron-Severi lattice N1(X) (i.e., the determinant of the intersection form),
we have

b(X) ≤ d(X) · d(X)! · |∆| .

We present here several interesting examples of surfaces for which the Bounded Denomi-
nators Conjecture is true. However, we start with the example in positive characteristic with
the property that neither the Bounded Negativity nor the Bounded Denominators Conjecture
holds (via Theorem 2.3).

Example 3. (Surfaces with unbounded Zariski denominators in positive characteristic) Let C
be a curve of genus g ≥ 2 defined over a finite field of characteristic p > 0. The surface X =
C×C is then known to have unbounded negativity. Indeed, taking for n ∈ N the graph Γn of
the Frobenius morphism obtained by taking pn-th powers, we have Γ2

n = pn(2−2g) → −∞.
By Theorem 2.5, X must have unbounded Zariski denominators. In the particular case at
hand, these are in fact quickly detected. Denote by F2 a fiber of the second projection X →
C, and consider the divisor Dn = F2 + Γn. The negative part of its Zariski decomposition
has support Γn with coefficient

Dn · Γn

Γ2
n

=
1 + Γ2

n

Γ2
n

Since the numerator and denominator are coprime for all n, we see that the Zariski denomi-
nator is −Γ2

n = pn(2g − 2) and hence tends to infinity.

Next, we determine precise bounds on the Zariski denominators for classes of surfaces X
for which bounded negativity holds and explicit bounds b(X) are known.

Example 4. (Surfaces with nef anticanonical bundle) Let X be a smooth projective surface
with −KX nef. As a consequence of the adjunction formula, we have the negativity bound
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b(X) = 2. Indeed, for every irreducible curve one has 2pa(C) − 2 = KX · C + C2 ≤ C2,
and hence C2 ≥ −2.

It means that for every pseudo-effective integral divisor D on X , the Zariski decomposition
of 2ρ−1! ·D is integral.

Further developments regarding Denominators in Zariski decompositions
Here we briefly discuss results that are motivated by [Hab1].

[1] B. Harbourne, P. Pokora, H. Tutaj-Gasińska, On integral Zariski decompositions of
pseudoeffective divisors on algebraic surfaces. Electron. Res. Announc. Math. Sci.
22: 103-108 (2015).

Our first problem that we tried to approach is the following.

Problem 2.6. Let X be a smooth complex projective surface such that d(X) = 1. Is
it true that one always has b(X) = 1?

The answer to this question is negative, namely there exists a smooth complex
projective surface with d(X) = 1, but b(X) = 2.

Theorem 2.7. There exists a smooth complex K3 surface X of Picard number 2
having intersection form (

−2 4
4 −2

)
such that all integral pseudoeffective divisors on X have integral Zariski decomposi-
tions.

We also obtained, somehow surprisingly, that there exists a strict relation between a
weak version of the SHGH conjecture and integral Zariski decompositions of integral
pseudoeffective divisors on blow-ups of the complex projective plane. Let us recall
that a weak version of the SHGH conjecture tells us that on the blowing-up of the
complex projective plane along s ≥ 10 very general points the only negative curves
are (−1)-curves.

Theorem 2.8. Let π : X → P2 be the blowing up (over an algebraically closed
ground field K of arbitrary characteristic) of a finite set of points p1, . . . , ps (possibly
infinitely near). Suppose that every integral pseudoeffective divisor D has an integral
Zariski decomposition. Then all negative curves on X have self-intersection −1 (i.e.,
are (−1)-curves).

[2] M. Kapustka, G. Mongardi, G. Pacienza, P. Pokora, On the Boucksom-Zariski de-
composition for irreducible symplectic varieties and bounded negativity. Electroni-
cally available at arXiv:1911.03367.

In the paper we study a natural generalization of the boundedness problem for
Zariski decompositions to varieties of dimension greater than 2. Our decision to
study smooth projective irreducible symplectic varieties is motivated by the existence
of the so-called Boucksom-Zariski decomposition that has all desired properties for
studying boundedness questions.
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Theorem 2.9. Let X be a smooth projective irreducible symplectic variety of Picard
number ρ(X). The denominators of the coefficients of the negative and positive parts
of the Boucksom-Zariski decompositions of all pseudo-effective Cartier divisors are
bounded by (4 · Cardinality(AX))

ρ(X)−1)!, where

AX := H2(X,Z)∨/H2(X,Z)
is the finite discriminant group of the intersection lattice.

Corollary 2.10. Let X be a smooth projective irreducible symplectic variety of di-
mension 2n and let L ∈ Pic(X) be a big line bundle. Then for all

m ≥ 1

2
(2n+ 2)(2n+ 3)(4 · Cardinality(AX))

ρ(X)−1)!

the map associated to the linear system |mL| is birational onto its image.

2.2. Harbourne indices and curve configurations in algebraic surfaces. At the very be-
ginning, we focus on the so-called d-configurations of curves in the complex projective plane.

Definition 2.11. Let C = {C1, ..., Cτ} ⊂ P2
C be a configuration of τ ≥ 3 curves. We say that

C is a d-configuration if
• all irreducible components Ci are smooth and have the same fixed degree d ≥ 1,
• every pair of curves intersects transversally, i.e., locally these intersections look like
x1 · x2 = 0,

• there is no point where all curves meet.

Our d-configuration can be considered as a natural generalization of line configurations,
i.e., 1-configurations are exactly line arrangements in the plane. In particular, we will say
that 2-configurations are simply conic configurations even if it might happen that in general
configurations of conics have non-ordinary singularities, but we hope that our abuse is not
going to be misleading. Along the same lines, let C be a d-configuration of τ ≥ 3 curves (or
any configuration of smooth irreducible curves having only ordinary singularities), then by
tr we denote the number of r-fold points, i.e., points where exactly r curves from C meet.
Moreover, for i ∈ {0, 1, 2}, we define

fi =
∑
r≥2

ritr.

Definition 2.12. (Degree d-global Harbourne index) The degree d-global Harbourne index
of P2

C is the infimum
hd(P2

C) := inf
C
h(P2

C; C)

taken over all d-configurations C with fixed d ≥ 1 in P2
C.

We start with line arrangements in the complex projective plane. This result was presented
by the applicant in 2014 during the workshop Negative Curves on Algebraic Surfaces [12,
p. 567] and it was used to show the boundedness of the so-called global linear Harbourne
constant in [4] - here we present a simplified version of this result in order to keep the coher-
ence of the report.

Theorem 2.13 ([4]). With the above notation, one has

h1(P2
C) ≥ −4.
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In order to show this lower-bound, we used a very strong result in the theory of complex
line arrangements, namely Hirzebruch’s inequality [19].

Theorem 2.14. (Improved Hirzebruch’s inequality) Let L ⊂ P2
C be an arrangement of τ ≥ 4

lines such that tτ = tτ−1 = 0. Then

t2 +
3

4
t3 ≥ τ +

∑
r≥5

(r − 4)tr.

Based on this result, it is quite easy to provide a lower bound on h1(P2
C) and we refer to

[4] for the details. If we have a lower bound, which seems to be quite good, it is natural to
wonder whether we have any example approaching the value −4. The following example is
the world-record case for lowering the value of Harbourne indices for line arrangements in
the complex projective plane.

Example 5. This construction dates back to Wiman’s work [39] and it is strictly related to the
theory of irreducible complex reflection groups. There exists the arrangement W (since it is
unique up to the projective equivalence) of 45 complex lines in the projective plane that they
intersect at 120 triple, 45 quadruple and 36 quintuple points. If we compute its Harbourne
index, we obtain

h(P2
C;W) =

45− 3 · 120− 4 · 45− 5 · 36
201

= −225

67
≈ −3.36.

Now we want to report on the values of Harbourne indices for conic arrangements in the
plane. This result was obtained by the applicant and H. Tutaj-Gasińska in [30].

Theorem 2.15. One has
h2(P2

C) ≥ −9

2
.

If we allow our conic arrangements C to have the property that either tτ = 4 or tτ = 3,
then still the bound −9

2
holds for such arrangements. Moreover, if conic arrangements C

have tτ = 2, then we find a lower bound on Harbourne indices for such arrangements, but
our formula is rather complicated. In order to obtain such a bound, we used a natural relation
between conic arrangements having two base points and arrangements of (1, 1)-curves in
the complex quadric P1 × P1. In the case of tτ = 1, we cannot say anything, which is
somehow disappointing, but this is a consequence of some technical obstructions, i.e., we
cannot perform Hirzerbuch’s construction in this case successfully.

Now we focus on the case of d-configurations with d ≥ 3. The first step is the following
Hirzebruch-type inequality proved by the applicant and this can be considered as the second
most important scientific achievement in the portfolio of the applicant.

Theorem 2.16 ([Hab2]). Let C ⊂ P2
C be a d-configuration with d ≥ 3 and τ ≥ 4. Then(

7

2
d2 − 9

2
d

)
τ + t2 + t3 ≥

∑
r≥5

(r − 4)tr.

Let us explain how to prove this result shortly in order to present methods involved in
our proof. The key idea dates back to Hirzebruch in the late-eighties. He observed that one
can use abelian covers of the complex projective plane branched along line arrangements.
These abelian covers are given by the so-called Kummer extensions. We can mimic this
construction and study abelian covers of the complex projective plane branched along a given
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d-arrangement C with d ≥ 3 having the exponent n. This covering leads us to an algebraic
surface Xn with normal singularities which ramifies over the arrangement. One can show,
using local arguments on the surface, that Xn is singular exactly over a point p if and only if
p is a point of multiplicity ≥ 3 in the arrangement. After blowing up these singular points
we obtain a smooth surface Y C

n . It turns out that the Chern numbers of Y C
n can be read off

directly from the combinatorics of the arrangement C. Moreover, it can be shown that Y C
n has

non-negative Kodaira dimension if n ≥ 2, d ≥ 3, and the number of irreducible components
of C is grater than or equal to 4. In these cases we can apply the Bogomolov-Miyaoka-Yau
inequality [24]:

c21(Y
C
n ) ≤ 3c2(Y

C
n ).

Now we can define the following Hirzebruch polynomial:

PC(n) =
3c2(Y

C
n )− c21(Y

C
n )

nd−3
.

By the Bogomolov-Miyaoka-Yau inequality we have PC(n) ≥ 0, so plugging the value n = 3
to PC(n) gives us the desired inequality. Even if this construction is quite technical and
involving, the outcome is very handy and can be directly use to study questions revolving
around the bounded negativity problem. By example, the above inequality allows to prove
directly the following result.

Theorem 2.17 ([Hab2]). Let d ≥ 3 be fixed. Then

hd(P2
C) ≥ −4− 5

2
d2 +

9

2
d.

Now we pass to another class of curves and surfaces. From now on we assume that X is
a smooth complex projective surface with trivial canonical class, for instance X = K3. We
consider rational curve arrangements in X , i.e., C = {C1, ..., Cτ} ⊂ X is an arrangement
of smooth irreducible rational curves such that all singularities are ordinary. The first main
result in this new setting is a Hirzebruch-type inequality for rational curve arrangements, and
this is the third most important result of the applicant in the context of bounding Harbourne
indices.

Theorem 2.18 ([Hab3]). Let X be a smooth complex projective surface with trivial canonical
class. Assume that C ⊂ X is an arrangement of smooth irreducible rational curves having τ
irreducible components and only ordinary singularities. Then

4τ − t2 +
∑
r≥3

(r − 4)tr ≤ 3c2(X) ≤ 72.

Our proof of the above Hirzebruch-type inequality is based on the so-called logarithmic
version of the Bogomolov-Miyaoka-Yau inequality [25] and combinatorial considerations for
such curve arrangements. This result is a crucial step towards providing a lower bound on the
following global Harbourne index.

Definition 2.19. Let X be a smooth complex projective surface having trivial canonical class.
The real number

Hrational(X) = inf
C
h(X; C),

where the infimum is taken over all rational curve arrangements having only ordinary singu-
larities C ⊂ X , is called the global rational Harbourne index of X .
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Theorem 2.20 ([Hab3]). In the setting as above and under the assumptions as in Theorem
2.18, one has

Hrational(X) ≥ −45.

It is natural to wonder how negative Harbourne indices of our rational curve arrangements
could be. We addressed this problem in the second part of [Hab3] – we found, for instance,
two interesting arrangements in smooth hypersurfaces of degree 4 in P3

C having exactly 16
lines and 8 quadruple points providing Harbourne indices equal to −8. This shows that
starting with negative curves in algebraic surfaces we obtain a completely different picture of
Harbourne indices comparing with the case of the complex projective plane.

Further developments regarding Harbourne indices and curve arrangements
Here we briefly discuss very selected results that are related to the main core of [Hab2] and
[Hab3] - the order below is chronological.

[1] X. Roulleau, Bounded Negativity, Miyaoka—Sakai Inequality, and Elliptic Curve
Configurations. Int. Math. Res. Not. 2017(8): 2480–2496 (2017).

The author studies arrangements of elliptic curves in complex abelian surfaces.
The first main result of this paper tells us that if C is an arrangement of elliptic curves
in a complex abelian surface A, then

t2 +
3

4
t4 ≥

∑
r≥5

(2r − 9)tr,

so this result is extremely similar to Hirzebruch’s inequality for complex line arrange-
ments in the plane (at least in its shape). Using this result Roulleau is able to show
that we have

h(A; C) ≥ −4.

Moreover, the author explains how to construct an infinite series of smooth cubic
curve arrangements Cn in P2

C admitting not only ordinary singularities such that

h(P2
C;Cn) → −4

provided that n tends to ∞. Based on that observation, we know that h(P2
C) ≤ −4.

The aforementioned construction including smooth cubic curves has a very special
geometric origin - it comes from Roulleau-Urzúa’s construction of simply connected
complex surfaces of general type such that their Chern slopes are dense in [2, 3]. It is
worth mentioning that this construction of surfaces was published in Annals of Math-
ematics in 2015.

[2] R. Laface, P. Pokora, Local negativity of surfaces with non-negative Kodaira dimen-
sion and transversal configurations of curves. Glasg. Math. J. 62(1): 123–135 (2020).

In this paper we studied Harbourne indices for line arrangements in smooth hyper-
surfaces of degree n ≥ 3 in P3

C. From now on we assume that our line arrangements
are connected, i.e., there is no line which does not intersect other lines from the ar-
rangement.
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Theorem 2.21. Let Sn be a smooth hypersurface in P3
C of degree n ≥ 4 and let L be

a connected arrangement of d ≥ 2 lines in Sn, then one has

h(L;Sn) ≥ −n(n− 1).

Moreover, this bound is sharp and it is achieved by an arrangement consisting of n
lines meeting at a single point.

The second main result of the paper is devoted to transversal arrangements of
smooth curves (i.e. arrangements of smooth curves admitting ordinary singularities).

Theorem 2.22. Let X be a smooth complex projective surface with non-negative
Kodaira dimension, and let C = C1 + ...+Cn ⊂ X be a transversal arrangement of
smooth curves having n ≥ 2 irreducible components. Then

KX .C + 4
n∑

i=1

(1− g(Ci))− t2 +
∑
r≥3

(r − 4)tr ≤ 3c2(X)−K2
X .

Using this result we can show that if Helliptic(X) denotes the global elliptic Har-
bourne index of a smooth complex projective surface X with non-negative Kodaira
dimension (i.e., the infimum is taken over all arrangements of smooth elliptic curves
in X with only ordinary singularities), then

Helliptic(X) ≥ −4− (3e(X)−K2
X),

where we denote, as usually, by e(X) the Euler characteristic and by KX the canoni-
cal divisor.

[3] R. Laface, P. Pokora, Towards the weighted bounded negativity conjecture for blow-
ups of algebraic surfaces. Manuscr. Math. 163(3-4): 361–373 (2020).

Up to that moment, we considered only curve configurations having ordinary sin-
gularities, and it is very natural to ask how we can deal with the case of reduced
divisors having arbitrary singularities. It seems that for such singularities it is more
approachable to study the case of irreducible and reduced curves in surfaces and this
is exactly what we are going to do. Our main motivation is the following natural
conjecture which is called the weak bounded negativity conjecture.

Conjecture 2.23. (WBNC) Let X be a smooth complex projective surface, then there
exists an integer bw(X) such that for all irreducible and reduced curves C ⊂ X one
has

C2 ≥ −bw(X) · (H.C)2

for any big and nef line bundle H with H.C > 0.

This conjecture has a very interesting consequence, namely if the WBNC is true,
then the global Seshadri constant of X at a point x ∈ X is positive (this is the infimum
over single-point Seshadri constants at x ∈ X with respect to all ample bundles
L ∈ Pic(X)). Our main result here is the following generalization of Orevkov-
Zaidenberg’s inequality to surfaces with non-negative Kodaira dimension.

Theorem 2.24. Let X be a smooth complex projective surface having non-negative
Kodaira dimension. Assume that C ⊂ X is an irreducible and reduced curve in
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X having p1, ..., ps singular points. We denote by µi’s and mi’s the corresponding
Milnor numbers and multiplicities of pi’s. Then

s∑
i=1

(
2 +

1

mi

)
µi ≤ 3e(X)−K2

X + 2C2 +KX .C.

This result allows us to show the following result related to the WBNC.

Theorem 2.25. In the setting of the previous theorem, let π : Y → X be the blowing
up of X along n mutually distinct points. There exists a nef and big line bundle Γ on
Y such that for every irreducible and reduced curve C ⊂ Y one has

C2 ≥ −1

2

(
3e(X)−K2

X

)
− n− Γ.C.

In particular, our bound is linear as a Γ-degree function.

We can also show the following result.

Theorem 2.26. Let π : Xn → P2
C be the blowing-up at n mutually distinct points.

Then for every irreducible and reduced curve C ⊂ Xn (we can always assume that
C is not the exceptional divisor) one has

C2 ≥ −n(C.H),

where H = π∗(OP2
C
(1)).

[4] A. Dimca, B. Harbourne, G. Sticlaru, On the Bounded Negativity Conjecture and sin-
gular plane curves. Mosc. Math. J. 22(3): 427–450 (2022).

In this quite technical paper, the authors develop bounds on numerical characteris-
tics of curves constraining their negativity independently on the characteristic of the
underlying field F. The most interesting result, from our very subjective perspective,
tells us that the Harbourne index of a rational plane curve C with at most 9 singular
points satisfies h(P2

F, C) > −2, and this is regardless of the characteristic of F.

2.3. Clusters of points and constructions of highly singular curves. Here I will report
on [Hab4] which is a joint work of the applicant and Joaquim Roé. Due to its very technical
nature, we present the most important results and we shortly comment on the methods used in
the core spots. Here we decided to study the bounded negativity conjecture from a viewpoint
of infinitely near points (so speaking more precisely, clusters and weighted clusters of points).
Our starting point was a special version of Question 1.3 formulated previously, so let us
present it in a convenient form.

Question 2.27. Let S be a smooth complex projective surface, and assume that b(S) ∈ Z is
a positive integer such that for every irreducible and reduced curve C ⊂ S one has C2 ≥
−b(S). Let n ≥ 1 be an integer. Is there a positive integer b(S, n) ∈ Z such that for every
morphism Sπ

π→ S which is the composition of n point blow-ups, and every irreducible curve
C ⊂ Sπ, one has C2 ≥ −b(S, n)?
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If the answer to this question were positive for a given surface S and every n ≥ 1, then
all smooth projective surfaces birational to S would satisfy the BNC, but, as we know, there
is not a single surface on which the answer is known for all n. Even for the simplest case of
S = P2

C, the existence of b(P2
C, n) is unknown for all n > 9.

Since the self-intersection of the strict transform C̃ under the blow-up πp of S at a point
p ∈ C is C̃2 = C2 − m2

p(C), we expect b(S, n), if it exists, to be an increasing function
with respect to n. In the case of the plane, the existence of irreducible rational nodal curves
of every degree, aka Severi curves, shows that if b(P2

C, n) exists for all n, then

lim infn→∞(b(P2
C, n)/n) ≥ 2.

Indeed, a rational nodal curve of degree d has exactly n = (d− 1)(d− 2)/2 nodes, and after
blowing up these points its strict transform has self-intersection d2 − 4n ≃ −2n+ 3

√
2n. In

particular, b(P2
C, n) must grow at least linearly with n.

No sequence of irreducible curves with negativity growing faster than 2n is known and thus
observation has led to the search of new examples considering possibly reducible reduced
curves. Define

h(S, n) = inf
Sπ→S

n-pt blowup

{
inf

C⊂Sπ
reduced

C2

n

}
∈ R ∪ {−∞},

so that b(S, n) exists if and only if h(S, n) is finite. An example of arrangements with smooth
cubic curves presented by Roulleau show that lim infn→∞h(P2

C, n) ≤ −4, and no sequence
of examples has been found with larger than linear growth, so [4, Problem 3.10] asks whether
in fact limn→∞h(P2

C, n) = −4.
A consequence of our work is that, even if infn h(P2

C, n) were finite (which remains un-
known), it would not be equal to C2/n for any curve in a blowup Sπ → P2

C of P2
C at n

points.

Theorem 2.28 ([Hab4]). Let h = infn h(P2
C, n). For every morphism Sπ

π→ P2
C which is an

n point blow-up, and every reduced curve C ⊂ Sπ, one has C2 > h · n.

Now we pass to the discussion on Harbourne indices for reduced curves on smooth pro-
jective surfaces. As we observed in Introduction, these indices can be viewed as the average
intersection numbers of negative curves by the number of singular points that they possess.
A general definition that is introducing the notion of a Harbourne constant, especially with
respect to clusters of points, has the following form.

Definition 2.29. Let C ⊂ P2 be a reduced curve of degree d, and let K ⊂ P2
C be a finite set.

The Harbourne constant of C at K is defined as

H(C,K) =
d2 −

∑
p∈K mp(C)2

|K|
,

where |K| denotes the cardinality of K. It is often useful to generalize this notion and allow
for infinitely near points. In other words, one assumes that pi ∈ Si where S1 = P2

C and
πi : Si+1 → Si is the blowup centered at pi, and then mpi(C) is replaced by the multiplicity
of the strict transform of C at pi.

In this setting, the Harbourne index of a curve C with ordinary singularities is the Har-
bourne constant of C at the set of singular points, namely

h(P2
C;C) = H(C, Sing(C)).
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Up to that moment, the most negative Harbourne index for curves with ordinary singu-
larities found in the literature is given by Wiman’s arrangement of lines W , which has
h(P2

C;W) = −225/67 ≃ −3.358. In [Hab4], we constructed the most negative known
example of a reduced plane curve with only ordinary singularities.

Theorem 2.30 ([Hab4]). There exist reduced curves C ⊂ P2
C with ordinary singularities and

Harbourne indices h(P2
C;C) arbitrarily close to −25/7 ≃ −3.571.

In order to construct such curves, we apply the classical Kummer covering

π : P2
C ∋ [x : y : z] → [xk : yk : zk] ∈ P2

C

branched along xyz = 0 with k ∈ Z≥2 to Wiman’s arrangement of 45 lines. Taking con-
secutive large values of k, we can observe that the sequence of curves Ck that we obtained
by taking the preimages with respect to π has the following property: the Harbourne index
h(P2

C;Ck) tends to the value −225
67

· 201
198

= −25
7
≈ −3.571 provided that k → ∞.

Further developments regarding Harbourne indices, clusters of points, and
constructions of highly singular curves via ramified morphisms

[1] P. Pokora and J. Roé, The 21 reducible polars of Klein’s quartic. Exp. Math. 30(1): 1
– 18 (2021).

In this paper we construct a family of the so-called Klein’s arrangements of curves.
These curves are constructed via the gradient map given by the partials of the stan-
dardized equation of the Klein quartic curve

Φ4 : xy3 + yz3 + zx3 = 0.

It is well-known that the Klein quartic has the largest possible order of the automor-
phism group (according to Hurwitz’s bound) among curves of degree 4, namely 168.
This group acts on the complex projective plane. In particular, using this group (or
its extension to C3 which is the Shephard-Todd irreducible reflection group G24) we
can construct an arrangement of 21 complex lines having 21 quadruple and 28 triple
intersection points - this the well-known Klein’s arrangement of lines. Using the gra-
dient map and a suitable chosen defining equation of the Klein arrangement of lines,
we get a curve of degree 63 which splits into two orbits, one consists of 21 lines, and
the second consists of 21 smooth conics. Each line intersects exactly one conic in
two points, so we obtain 2 · 21 = 42 double, 9 · 21 = 189 quadruple and 9 · 28 = 252
triple intersection points. It turns out that we can keep continuing successfully this
procedure, for instance we can take the preimage of the curve of degree 63 obtaining
an arrangement of curves consisting of 21 lines, 21 conics, and 21 curves of degree 6
(each type of curves forms an orbit of the length 21). However, in this case we know
that singularities are no longer ordinary, and we are still missing a complete picture
of all singular points.

[2] I. Dolgachev, A. Laface, U. Persson, G. Urzúa, Chilean configuration of conics, lines
and points. Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 23(2): 877–914 (2022).
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In this extremely interesting and insightful paper the authors construct a highly
non-trivial arrangement of 12 smooth conics having exactly 9 eightfold points and
12 double points that can be considered as a natural generalization of the famous
Hesse arrangement of 12 lines in the complex projective plane. The arrangement of
12 conics is right now called Chilean arrangement of 12 conics and it realizes an ab-
stract configuration of conics and points (126, 98). This arrangement is constructed
with the use of an Halphen pencil of index 2 which contains exactly four reducible
members, each is the union of three smooth conics. Moreover, the authors show that
any Halphen elliptic fibration of index 2 with four singular fibers arises from such a
configuration of conics which stands as the uniqueness result for the Chilean arrange-
ment.

[3] C. Galindo, F. Monserrat, C.-J. Moreno-Ávila, E. Pérez-Callejo, On the Degree of
Curves with Prescribed Multiplicities and Bounded Negativity. Int. Math. Res. Not.,
https://doi.org/10.1093/imrn/rnac085.

In this paper the authors provide a lower bound on the degree of curves of the pro-
jective plane P2

C passing through the centers of a divisorial valuation ν of P2
C with

prescribed multiplicities. They also give some results related to the bounded nega-
tivity conjecture concerning those rational surfaces having the projective plane as a
relatively minimal model.

2.4. Conic-line arrangements in the complex projective plane and their freeness, nega-
tivity and combinatorics. Our main aim for this section is to present techniques and tools
developed by the applicant with co-authors towards better understanding of the combinatorics
and geometry of rational curve arrangements. Undoubtedly the theory of line arrangements is
a classical and rich subject of studies with many deep results with applications and impact in
numerous branches of mathematics. However, if we look at the theory of curve arrangements
in the plane, to our surprise, a lot of work has to be done in order to reach the same level of
understanding. This is the main reason why we decided to start working systematically with
arrangements of smooth conics and lines in the complex projective plane. For the first part of
our discussion, let us present our setting. We are going to consider arrangements of smooth
rational curves (smooth conics and lines) having only ordinary singularities. This assumption
might be considered as a strong restriction, but the most important advantage of this approach
is that we can apply some combinatorial methods which are hardly applicable if we start to
work in the whole generality.

If CL = {ℓ1, ..., ℓd, C1, ..., Ck} ⊂ P2
C is an arrangement of d lines and k conics having only

ordinary singularities, i.e., the intersection points look locally as {xk = yk} for some integer
k ≥ 2, then we have the following combinatorial count (by Bézout):

4

(
k

2

)
+

(
d

2

)
+ 2kd =

∑
r≥2

(
r

2

)
tr,

where tr denotes the number of r-fold points, i.e., points where exactly r curves from CL
meet.
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First of all, we showed a de Bruijn-Erdős type result which provides a lower bound on the
number of intersection points for a certain class of conic-line arrangements - this result is
directly inspired by combinatorial considerations presented and studied in [Hab5].

Theorem 2.31 ([Hab7]). Let CL = {ℓ1, ..., ℓd, C1, ..., Ck} ⊂ P2
C be an arrangement of d ≥ 2

lines and k ≥ 2 conics having only ordinary singularities as the intersections. Furthermore,
assume that tk+d = tk+d−1 = tk+d−2 = tk+d−3 = 0, then one always has

f0 =
∑
r≥2

tr ≥ k + d.

The proof of this statement is a merger of classical geometric considerations and properties
of the intersection form that are decoded by the Hodge index theorem.

In the next step, we focused on a Hirzebruch-type inequality for conic-line arrangement
and we provided the following results that can be considered as the main contribution from
the paper [Hab7].

Theorem 2.32. Let CL = {ℓ1, ..., ℓd, C1, ..., Ck} ⊂ P2
C be an arrangement of d ≥ 6 lines

and k ≥ 2 conics such that all intersection points are ordinary singularities. Moreover, we
assume that td+k = 0 and one can can find a subarrangement of CL consisting of 6 lines
intersecting only along double and triple points. Then one has

8k + t2 +
3

4
t3 ≥ d+

∑
r≥5

(2r − 9)tr.

In order to show the above inequality, we used the theory of abelian cover proposed by
Namba - this construction is more involved comparing with Hirzebruch’s papers and there is
not so much flexibility in considerations.

Now we are ready to present certain applications. Our first result is devoted to the local
negativity problem.

Theorem 2.33. Let CL ⊂ P2
C be a conic-line arrangement satisfying the assumptions of

Theorem 2.32, then one has
h(P2

C; CL) ≥ −4.5.

Next, we studied log-surfaces and their Chern slopes. Let CL = {ℓ1, ..., ℓd, C1, ..., Ck} ⊆
P2
C be an arrangement of k conics and d lines having only ordinary singularities. Assume

additionally that tk+d = 0. Consider the blowing up f : X → P2
C along the set of singular

points of CL having multiplicity ≥ 3. Denote by CL the reduced total transform of CL. Then
the pair (X, CL) is a log-surface. We can easily compute the Chern numbers of pair (X, CL),
namely

c21(X, CL) = 9− 5d− 8k +
∑
r≥2

(3r − 4)tr;

c2(X, CL) = 3− 2d− 2k +
∑
r≥2

(r − 1)tr.

Let us recall that by a result due to Miyaoka and Sakai, if the logarithmic Kodaira dimension
of pair (X, CL) is equal to 2, i.e., κ(X, CL) = 2, then we have

c21(X, CL) ≤ 3c2(X, CL).
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If we restrict our attention to the case of lines, i.e., k = 0, then by a result due to Sommese
[33, Theorem 5.1] we know that one always has

c21(X,L) ≤ 8

3
c2(X,L),

and the equality holds if and only if L is projectively equivalent to the dual Hesse arrangement
of lines H.
If the ground field F is arbitrary, then Eterović, Figueroa, and Urzúa in [14] proved that

2d− 6

d− 2
≤ c21(X,L)

c2(X,L)
≤ 3,

and the left-hand side equality holds if and only if L is a star configuration, i.e., it has only
double intersection points, and the right hand side equality holds if and only if

∑
r≥2 tr = d,

so this is the case, for instance, when L is a finite projective plane arrangement. Among oth-
ers, they also found an interesting link between Harbourne indices of line arrangements and
the limit points of ratios of log-Chern numbers – in fact one can show that the accumulation
points of H-indices of line arrangements L are in one-to-one correspondence with the limit
points of c21(X,L)

c2(X,L) , see [14, Proposition 4.9].
If we focus on the case of conic arrangements, i.e., d = 0, then the applicant in [27] proved

that one always has

c21(X, C) < 8

3
c2(X, C),

but we do not have any example of a conic arrangement C such that for the associated pair
(X, C) one has c21(X,C)

c2(X,C) ≈ 8
3
. Now we are going to study some extremal conic-line arrange-

ments from the viewpoint of log-Chern slopes. Let us call the ratio

E(X, CL) := c21(X, CL)
c2(X, CL)

is the log-Chern slope of (X, CL). Before we present our main contribution, we want to recall
the following (modified) question by Urzúa [37, Question VII.12] which is a main motivation
for our studies.

Question 2.34. Let CL ⊂ P2
C be an arrangement of k ≥ 2 conics and d ≥ 2 lines such that

all intersection points are ordinary. Is it true that E(X, CL) ≤ 8
3
?

Unfortunately, we do not know whether the answer is yes, but we were able to construct
conic-line arrangements having high values of E(X, CL). Our record comes from a construc-
tion that was established in the aforementioned paper on Klein’s arrangements written by the
applicant and Roé.

Example 6. Let us recall that Klein’s arrangement of conics and lines in the complex projec-
tive plane is an arrangement consisting of 21 lines and 21 conics (these curves are polars to
Klein’s quartic curve at the 21 quadruple points of Klein’s arrangement of 21 lines), and it
has 42 double points, 252 triple points, and 189 quadruple points. Simple computations give

E(X, CL) = c21(X, CL)
c2(X, CL)

=
9− 8 · 21− 5 · 21 + 2 · 42 + 5 · 252 + 8 · 189
3− 2 · 21− 2 · 21 + 42 + 2 · 252 + 3 · 189

≈ 2.512,

and this is the highest known value of log-Chern slopes in the class of conic-line arrange-
ments.
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Now we are passing to the questions revolving around freeness of conic-line arrangements
in the complex projective plane, this is a part of a joint project with Alexandru Dimca which
consists of several papers (right now we have 2 published articles, 2 preprints, and at least
one forthcoming note).

We start with presenting our set-up. Let CL = {ℓ1, ..., ℓd, C1, ..., Ck} ⊂ P2
C be an arrange-

ment consisting of d lines and k smooth conics. We assume that our conic-line arrangements
have n2 nodes, t tacnodes, and n3 ordinary triple points. We have the following combinatorial
count

4

(
k

2

)
+

(
d

2

)
+ 2kd = n2 + 2t+ 3n3.

The first result for this part of the achievement is the following Hirzebruch-type inequality
that comes from [Hab6].

Theorem 2.35. Let CL = {ℓ1, ..., ℓd, C1, ..., Ck} ⊂ P2
C be an arrangement of d lines and k

smooth conics and such that 2k + d ≥ 12. Assume that CL has only n2 nodes, t tacnodes,
and n3 ordinary triple points. Then

20k + n2 +
3

4
n3 ≥ d+ 4t.

The proof is based on an orbifold version of the Bogomolov-Miyaoka-Yau inequality pre-
sented by Langer in [22]. Then, using the spectra of singularities and techniques developed
by Varchenko and Steenbrink, we showed the following result that also comes from [Hab6].

Theorem 2.36. Let CL = {ℓ1, ..., ℓd, C1, ..., Ck} ⊂ P2
C be an arrangement of d ≥ 0 lines and

k ≥ 0 smooth conics. Assume that CL has only n2 nodes, t tacnodes, and n3 ordinary triple
points. Let C = ℓ1+ ...+ ℓd+C1+ ...+Ck and write m := degC = d+2k as m = 3m′+ ϵ
with ϵ ∈ {1, 2, 3}. Then one has

t+ n3 ≤
(
m− 1

2

)
+ k − m′(5m′ − 3)

2

and
n3 ≤ (m′ + 1)(2m′ + 1).

The main contribution in the field of the freeness of conic-line arrangements with nodes,
tacnodes, and ordinary triple points is the following complete classification of such arrange-
ments [Hab6].

Theorem 2.37. Let CL be an arrangement of d ≥ 1 lines and k ≥ 1 smooth conics having
only nodes, tacnodes, and ordinary triple points as singularities. Then CL is free if and only
if one of the following cases occur. In each case we list the numbers n2, t, and n3 of nodes,
tacnodes, and ordinary triple points, respectively.

(1) d = k = 1 and CL consists of a smooth conic and a tangent line. In this case,
n2 = n3 = 0, t = 1.

(2) d = 2, k = 1 and CL consists of a smooth conic and two tangent lines. In this case
n2 = 1, n3 = 0, t = 2.

(3) d = 3, k = 1 and either CL is a smooth conic inscribed in a triangle, or CL is a
smooth conic circumscribed in a triangle. In the first case we have n2 = 3, n3 = 0,
t = 3, and in the second case we have n2 = t = 0, n3 = 3.

(4) d = 3, k = 2 and CL consists of a triangle ∆, a smooth conic inscribed in ∆, and
another smooth conic circumscribed in ∆. In this case, n2 = 0, n3 = 3, t = 5.
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In particular, a free conic-line arrangement having only nodes, tacnodes, and ordinary triple
points is determined up to a projective equivalence by the numerical data n2, n3 and t.

As a simple corollary, we obtain the following.

Corollary 2.38. Numerical Terao’s Conjecture holds for conic-line arrangements with nodes,
tacnodes, and ordinary triple points.

Further developments regarding the freeness and nearly-freeness of reduced plane
curves

Here we present briefly very selected results revolved around the freeness of reduced plane
curves in the complex projective plane.

[1] A. Dimca, M. Janasz, P. Pokora, On plane conic arrangements with nodes and tacn-
odes. Innov. Incidence Geom. 19(2): 47 – 58 (2022).

In that paper we studied arrangements of smooth conics having only nodes and
tacnodes as singularities. We showed that if C = {C1, ..., Ck} ⊂ P2

C is an arrangement
of k ≥ 6 smooth conics which admits only nodes and tacnodes as singularities, then

t ≤ k2

3
+ 3k.

In particular, this improves Miyaoka’s bound on the number of tacnodes presented in
[25]. Moreover, we provide a complete characterization of nearly-free conic arrange-
ments with nodes and tacnodes.

Theorem 2.39. Let C ⊂ P2
C be an arrangement of k ≥ 2 smooth conics with only

nodes and tacnodes as singularities. Then C is nearly-free if and only if

k ≤ 4 and t = k(k − 1).

[2] P. Pokora, Q-conic arrangements in the complex projective plane. Electronically
available at arXiv:2203.11503.

The main aim of the note was to study the freeness of smooth conic arrangements
with nodes, tacnodes, and ordinary tripe and quadruple points. The main result of the
note gives us the following.

Theorem 2.40. There does not exist any arrangement with k ≥ 3 conics in the
complex projective plane with nodes, tacnodes, ordinary triple and quadruple points
which is free.

[3] A. Gałecka, On the nearly freeness of conic-line arrangements with nodes, tacnodes,
and ordinary triple points. Bol. Soc. Mat. Mex., III. Ser. 28(3): Paper No. 67, 12 p.
(2022).

The author shows that if there exists a nearly-free conic-line arrangement in the
complex plane with nodes, tacnodes, and ordinary triple points, then its degree is
less or equal to 12. In the next step, the author provides examples of such conic-line
arrangements having degree d ∈ {3, 4, 5, 6, 7}. Then, based on a Hirzebruch-type
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inequality for such conic-line arrangements, the author is able to show that there are
no conic-line arrangements with nodes, tacnodes, and ordinary triple points if degree
d ∈ {10, 11, 12}. Based on that discussion, it remains to decide whether we can find
examples of nearly-free conic-line arrangements in degree 8 and 9, but this problem
seems to be very difficult.

[4] A. Dimca, P. Pokora, Maximizing curves viewed as free curves. Electronically avail-
able at arXiv:2208.13399.

The main aim of the paper is to establish a direct link between reduced free com-
plex plane curves with ADE-singularities and the so-called maximizing curves, i.e.,
reduced curves C ⊂ P2

C with ADE-singularities of even degree n ≥ 4 such that

τ(C) = 3
n

2

(
n

2
− 1

)
+ 1,

where τ(C) denotes the total Tjurina number of C. Our main result can be formulated
as follows.

Theorem 2.41. Let C be a plane curve of degree n = 2m ≥ 4 having only ADE-
singularities. Then C is maximizing if and only if C is a free curve with the exponents
(m− 1,m).

2.5. Hirzebruch-type inequality and their applications towards extreme combinatorial
problems. This part, aimed to be less technical than the previous section, is to report on
[Hab5]. This article combines features of a modern survey on Hirzebruch-type inequali-
ties and applications towards better understanding of extreme point-line configurations in the
plane and a research article (since it contains new results). The main purpose of this article
was to provide an introduction, algebro-topological in its nature, to Hirzebruch-type inequali-
ties for plane curve arrangements in the complex projective plane and our goal was to present
a summary of the technicalities and some recent combinatorial applications, for instance
in the context of the Weak Dirac Conjecture. Moreover, we put into one spot relevant re-
sults obtained by the applicant in the framework of Hirzebruch-type inequalities for reduced
plane curves in [27, 28] and a combinatorial approach towards constructing new examples of
ball-quotient surfaces [6, 27, 29]. The most important part is devoted to an understandable
explanation (on the level of combinatorics and algebra) of Hirzebruch’s proof of his famous
inequality for complex line arrangements. We present also other inequalities for line arrange-
ments obtained with use of an orbifold version of the Bogomolov-Miyaoka-Yau inequalities.
Let us recall results obtained by the applicant in [28] that are discussed in [Hab5].

Theorem 2.42. Let C = {C1, ..., Cτ} ⊂ P2
C be a d-arrangement of τ ≥ 3 curves with d ≥ 2.

Then

t2 +
3

4
t3 + d2τ(dτ − τ − 1) ≥

∑
r≥5

(
r2

4
− r

)
tr.
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Theorem 2.43. Let CL = {ℓ1, ..., ℓd, C1, ..., Ck} be an arrangement of d lines and k conics
such that tr = 0 for r > 2(d+2k)

3
, and we assume that all intersection points of the arrange-

ment are ordinary singularities. Then

t2 +
3

4
t3 + (4k + 2d− 4)k ≥ d+

∑
r≥5

(
r2

4
− r

)
tr.

In the second part of the paper (which has a purely survey role), where algebraic geometry
meets combinatorics, we recall the most important results in the extreme theory of point-line
configurations in the plane obtained by using Hirzebruch-type inequalities. Let us denote by
P ⊂ P2

C a finite set of n mutually distinct points and let L(P) be the set of lines determined
by P , where a line that passes through at least two points from P is said to be determined by
P .

As a starting point for our discussion we recall the original Dirac conjecture.

Conjecture 2.44 (Dirac). Every set P of n non-collinear points contains a point in at least
n
2

lines determined by P .

It turned out that the Dirac conjecture is false – the smallest counterexample has n =
7 points, namely the vertices of a triangle together with the midpoints of its sides and its
centroid. However, the conjecture was resolved positively by Green and Tao in [16] for very
large n. In this view, we can formulate the actual Dirac conjecture which is, according to our
best knowledge, open.

Conjecture 2.45. There is a constant c such that every set P of n non-collinear points con-
tains a point in at least n

2
− c lines determined by P .

In 1961, P. Erdős proposed the following Weak Dirac Conjecture [13].

Conjecture 2.46 (WDC). Every set P of n non-collinear points in the plane (presumably
over the real numbers) contains a point which is incident to at least ⌈n

c
⌉ lines from L(P) for

some constant c > 0.

The Weak Dirac Conjecture was proved independently by Beck [5] and Szemerédi-Trotter
[34], but they did not specify the actual value of c. It is worth noticing that in [21, Chapter
6], the authors explained that it is plausible to believe that c = 3, and it turned out that this
prediction is correct [17].

Theorem 2.47 (Han). The Weak Dirac Conjecture holds with c = 3.

The proof, very simple in its nature, is directly based on Bojanowski-Langer’s inequality
[7].

Theorem 2.48. Let L ⊂ P2
C be a line arrangement with τ ≥ 6 such that tr = 0 for r > 2τ

3
.

Then we have

t2 +
3

4
t3 ≥ τ +

∑
r≥5

(
r2

4
− r

)
tr.

Finally, let us comment on another important result in the extreme theory of point-line
configurations in the plane, namely Beck’s theorem [5].

Theorem 2.49 (Beck). For a finite set P of n points in R2 one of the following is true:
• there exists a line that contains c1n points from P for some positive c1;



27

• there are at least c2n2 lines determined by P .

Using Langer’s results revolved around Hirzebruch’s type inequalities, de Zeeuw in [9]
prove the following result that provides the strongest known version of Beck’s theorem.

Theorem 2.50 (de Zeeuw). Let P be a finite set of n points in R2, then one of the following
is true:

• there is a line that contains more than 6+
√
3

9
n points of P;

• there are at least n2

9
lines determined by P .

3. SUMMARY

My research presented as the habilitation achievement is carried out within the theory of
curves in algebraic surfaces, but it reaches out to other areas due to the interdisciplinary na-
ture of the objects that I am studying. The main subjects of my studies are variations on
Terao’s freeness conjecture which combines both combinatorial and algebraic methods, and
the bounded negativity conjecture, one of the oldest and the most fundamental open problems
in the theory of algebraic surfaces. My habilitation achievement gives a substantial progress
towards better understanding of singular curves in the context of their local negativity and
they provide a bridge between negative curves and the Zariski decompositions. Moreover,
results towards Numerical Terao’s freeness conjecture explain also the non-existence of cer-
tain presumably highly singular curves. In order to prove many results devoted to the bounded
negativity conjecture, I obtained several Hirzebruch-type inequalities which have a very com-
binatorial nature. Due to this reason, my results are of interests of combinatorialists working
on the extreme point-curve problems. Moreover, constructing singular curves is very im-
portant due to its applications towards the containment problems, i.e., questions about the
containment of symbolic powers of homogeneous ideals associated with sets of points and
their algebraic powers. This makes my habilitation achievement even stronger due to possible
applications in different subfields of study.
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Presentation of significant scientific activity carried out at more than one university,
scientific or cultural institution, especially at foreign institutions

I began my scientific activity carried out outside my University, during the PhD Programme
at the Pedagogical University of Cracow, in Poland and in Germany almost simultaneously.
In 2013, I spent one semester in the Warsaw Centre for Mathematics and Computer Sci-
ences where I was able to take part in an advanced course in algebraic geometry devoted
to the positivity in algebraic geometry. At that time I started my international collaboration
with David Schmitz (Marburg). Shortly afterwards I spent my first short internship in Bonn
(January 2014) and I had a great chance to discuss mathematics with Robert Lazarsfeld,
a world-renowned expert in positivity in algebraic geometry. In 2014, I spend one whole
semester at Albert-Ludwigs Univerität Freiburg im Breisgau (in the framework of ERAS-
MUS+ Exchange Programme) working in the group run by Prof. Stefan Kebekus, and then
the whole winter semester of the academic year 2014/2015 at Philipps Universität Marburg
(an der Lahn) working in the research group run by Prof. Thomas Bauer - my stay there was
supported by the DAAD Scholarship awarded in June 2014. Shortly after defending my PhD
thesis, I applied for a Post-Doc position at Johannes Gutenberg Universität in Mainz, and my
application was accepted by the selection committee and then I was attached to the research
group run by Prof. Manfred Lehn. In that period, I started many research projects in the inter-
national collaborations, mostly working with Xavier Roulleau (Professor at Aix Marseilles),
Jürgen Bokowski (Professor Emeritus in Darmstadt), Roberto Laface (PhD student and then
Post-Doc in Hannover), Joaquim Roé (Professor at Autonoma Barcelona). After one year
position in Mainz, I spent one additional year in Hannover working in the research group
run by Prof. Klaus Hulek. During that time I continued my international collaboration and
I obtained the academic title Privatdozent. In November 2017, I came back to Poland and
from that time I worked at the Institute of Mathematics Polish Academy of Sciences and from
October 2019 at the Pedagogical University of Cracow. From that period I was collaborating
remotely, due to the COVID pandemic time, with Alexandru Dimca (Professor Emeritus at
Nice) and Tim Römer (Professor at Osnabrück). In all cases mentioned above, the collab-
orations were successful with papers published in recognized mathematical journals, like in
Crelle’s journal, Journal of Algebraic Combinatorics, Manuscripta Mathematica, or Results
in Mathematics.

In the meantime, working both in Germany and Poland, I took part in many conferences
and I was an invited speaker for several conferences. The most important talks that I gave
took place in Oberwolfach, Luminy, and Edinburgh. Moreover, I presented posters at several
occasions, probably the most important presentation was during the AMS Summer Institutes
- Algebraic Geometry 2015 in Salt Lake City.

Presentation of teaching and organizational achievements as well as achievements in
popularization of science

Teaching

I started my teaching duties in the Winter Semester 2013/2014 when I was conducting my
internship at the Warsaw Center for Mathematics and Computer Sciences, and I was run-
ning exercises classes in Linear Algebra I at the Warsaw University. Then, after my PhD
defence, I was running classes for maths students at the Pedagogical University of Cracow,
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namely Computer Algebra and Introduction to Programming in C++, and simultaneously
I was lecturing Mathematics for biologists. During the time in Germany, in Mainz I was
teaching Topologie (an advanced course, in German) and Computeralgebra (both in English
and German). After moving to Hannover, I was teaching Lineare Algebra I (in German)
and Ebene Kurven - eine konkrete Einführung (in English and German). In the period of
November 2017 - September 2019 I held a position at the Polish Academy of Sciences and
I did not conduct teaching duties. After moving to the Pedagogical University of Cracow I
resumed my teaching. In this period of the last three years I run classes on every stage of the
academic education (both in Polish and in English). I am regularly teaching the whole one
year course devoted to Linear Algebra I & II (as a tutor running the exercises classes). I am
teaching regularly in the Doctoral School at our University (all classes are in English), and in
this case I am teaching a general course Research Grants I & II and Workshops in Specialized
Mathematics (12 hours each). Since I have an experience in grant applications (both personal
and institutional) my classes are mostly focused on providing the most important features
and tricks in applications. In the case of Special Workshops, I am teaching a combination
of advanced algebraic geometry, algebraic topology, and complex analysis. I was teaching
specialized courses for Bachelor students, for instance Curves and Surfaces with interesting
properties (two times), and Vector Bundles.

Moreover, I supervised 8 Bachelor Theses and 2 Master Theses. Right now I am supervis-
ing 4 Master Theses and two Doctoral Students. Among these Bachelor and Master Students,
as grades for written theses, 2 of them received the grade A with Distinctions, 6 of them re-
ceived grade A, and 2 of them received grade B. Moreover, two of these students wrote their
first research papers, namely

• Maria Tombarkiewicz (Bachleor Thesis, Grade: A with Distinctions): her project
was devoted to symbolic powers of ideals associated with point-line configurations
in the complex projective plane, based on her thesis, together with another student,
she wrote a research paper entitled On Yoshinaga’s arrangement of lines and the
containment problem that has been recently published in Bulletin Mathématique de
la Société des Sciences Mathématiques de Roumanie.

• Aleksandra Gałecka (Master Thesis, Ongoing): her project is devoted to the geom-
etry of nearly-free arrangements of conics and lines in the complex projective plane
having only nodes, tacnodes, and ordinary triple points. Her results, providing an
almost complete characterization of such arrangements, have been recently published
in the paper entitled On the nearly freeness of conic-line arrangements with nodes,
tacnodes, and ordinary triple points in Boletín de la Sociedad Matemática Mexi-
cana.

Advising

In 2019-2020 I acted as an Auxiliary Supervisor of mgr Jakub Kabat (Pedagogical University
of Cracow), his Main Supervisor was prof. Tomasz Szemberg. Kabat defended his PhD thesis
in November 2020, the title of doctoral thesis is Line arrangements in algebraic terms, and it
is available online on the web-page of the repository of the Pedagogical University of Cracow.
His thesis was partially devoted to the classification of free line arrangements with double
and triple points, the theory of symbolic powers of homogeneous ideals, and constructing
examples of supersolvable line arrangements using Ziegler’s trick by extensions.
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Moreover, I was asked to take part both as a member of committees and as a referee for
two PhD theses, namely

• PhD thesis in Mathematics at the University of Kingston, Chrisa Dionne, thesis Nu-
merical restrictions on Seshadri curves with applications to P1×P1, defended at 13th
October 2021.

• PhD thesis in Mathematics at Leibniz Universität in Hannover, David Geis, thesis On
the combinatorics of Tits arrangements, defended with distinctions at 31st May 2018.

Organisation

In the period 2016-2022 I was co-organizing 6 international conferences, both in Poland and
Germany. In 2022, I was co-organizing two satellite conferences to the Virtual ICM, namely
MEGA 2022 (Effective Methods in Algebraic Geometry), 20-24 June 2022 in Kraków and
Recent Advances in Classical Algebraic Geometry, 28 June - 2 July 2022 in Kraków. I am
regularly organizing reading seminar for young researchers at the Pedagogical University of
Cracow. As a member of the scientific community at my home university, I am a member of
the following bodies:

• The Scientific Council of the Discipline Mathematics,
• The Council of the Institute of Mathematics,
• The Commission for the Scientific Matters at the Pedagogical University of Cracow,
• The Commission for the Realization of the Programme Excellence Initiative - Re-

search University.
Moreover, I also serve as the Deputy Chairman of the Scientific Council of the Discipline
Mathematics.

I am also involved in institutional grant applications that are regularly submitted by my
home university. For instance, I was in the team which successfully applied for Polish Na-
tional Agency for Academic Exchange Grant STER in 2021 (around 1 400 000 PLN subsidy).

Popularization of science

During the time when I was in Poland (2012 - 2015), I was giving regularly lectures at my
home secondary school in Mielec for math classes. I am also taking part in students confer-
ences which are organized by the Science Club Mathematics at the Pedagogical University of
Cracow. In 2021, I gave a public talk during one such event which was devoted to combina-
torial problems of point-line configurations in the real plane. Also, when I was an undergrad-
uate student, I was involved in many activities organized in the framework of Children’s Uni-
versity Foundation, mostly related with special workshops devoted to mathematical games
and problems for children.
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Other informations

Selected awards and scholarships

2020 DAAD Scholarship Research Stays for University Academics and Scientists, Octo-
ber 2020.

2018 Distinguished Reviewer of Zentralblatt MATH, awarded by FIZ Karlsruhe and
EMS.

2018 START 2018 Award of the Foundation for Polish Science (the most prestigious
scholarship for young Polish researchers, awarded yearly to 100 scientists under 30).

2018 Kazimierz Kuratowski Award for Mathematicians below 30 years old – the most
prestigious prize for young mathematicians in Poland.

2016 Riemann Scholarship, Riemann Center for Physics and Geometry Leibniz Univer-
sität Hannover, declined.

2016 Award of the Second Category from the Polish Ministry of Higher Education and
Science for outstanding scientific achievements.

2014 DAAD Scholarship for a Short Research Stays in Germany for PhD students, June
2014.

2011–2012 Scholarship from Małopolska Fundacja Stypendialna "Sapere Auso".
2010–2012 Scholarship of the Polish Minister of Science and Higher Education.
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