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Chapter 1

Introduction and motivation

The aim of this thesis is to explore proof systems for various modal, many-valued, and modal many-
valued logics. We consider two kinds of proof systems: sequent calculi (and their generalisations:
hypersequent and nested sequent calculi) and natural deduction systems. Sequent calculi are known
to be a good theoretical tool for the investigation of proofs; they visually and clearly represent the
structure of the proofs and allow the distinction between logical and structural rules to distinguish
the properties of the logical connectives and the properties of the consequence relation. One of the
central theorems of proof theory is the cut elimination theorem, or the cut admissibility theorem.
The cut elimination theorem says that if in a sequent calculus with a cut rule as a primitive we are
able to prove some sequent, then we are able to prove the same sequent in its cut-free version. The
cut admissibility theorem says that if in a cut-free sequent calculus we have proofs of the premisses of
a cut rule, then without using the cut rule itself, we are able to get its conclusion. As a consequence
of the cut elimination/admissibility theorem, it is often possible to reach the subformula property (or
some of its restricted forms), interpolation, decidability, and other important results. The advantage
of natural deduction systems is their similarity to the process of natural human reasoning.

In the case of natural deduction systems, there is an analogue of the cut elimination/admissibility
theorem: the normalisation theorem. It says that in the proof there are no maximal formulas (the
formulas that are conclusions of introduction rules and major premisses of elimination rules) and no
maximal segments (i.e., sequences of maximal formulas). In our case, we will use a slightly different
form of normalisation since we are going to deal with general elimination and general introduction
rules (it is easier to formulate calculi working with arbitrary n-ary Boolean or three- or four-valued
connectives in a uniform way with the help of such rules), so for us, a maximal formula is the one that
is a major premiss of a general elimination rule and a major assumption of a general introduction
rule. Anyway, the normalisation theorem helps establish the subformula property.

During our investigation, we will try to provide for any logic in question both a sequent calculus
(or rather, a hypersequent or a nested sequent calculus) and a natural deduction system. We will
prove the cut admissibility theorem for all the sequent calculi in question and do that by two methods:
a semantic one (as a consequence of a completeness theorem proven by a Hintikka-style argument,
the most popular and convenient method of proving completeness theorem for sequent calculi) and
a syntactic constructive one (for hypersequent calculi we use the method introduced by Metcalfe,
Olivetti, and Gabbay [123] and further developed by Ciabattoni, Metcalfe, and Montagna [26], it
seems to be the most effective and powerful method for hypersequent sequent calculi; for nested
sequent calculi we adopt Poggiolesi’s proof [157], since our nested sequent calculi are modifications of
Poggiolesi’s ones). The normalisation theorem will be proved by the syntactic constructive method
used by Kürbis [104, 103] which is especially useful for the natural deduction systems such that all
their rules are general introduction and general elimination rules. Although we consider different
logics from two different domains of non-classical logic, we prefer to use the same methodology to
study them. So for the logics in question, we present both sequent (hypersequent, nested sequent)
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6 CHAPTER 1. INTRODUCTION AND MOTIVATION

calculi and natural deduction systems. For any sequent (hypersequent, nested sequent) calculus in
question, we provide a Hintikka-style completeness proof; as a consequence, we get the cut admissi-
bility theorem and the subformula property; then we present a constructive cut admissibility proof.
For any natural deduction system in question, we give a Henkin-style completeness proof or a proof
of its equivalence to the corresponding sequent calculus (if the completeness theorem for a natural
deduction system in question has not been proven before in the literature), a constructive syntactic
normalisation proof, and establish the subformula property.

We have said some general words about the proof systems we are going to investigate. Let us
say a few words about logics for which these proof systems are developed. We explore two different
fields of non-classical logics: modal and many-valued ones, including their mixture, modal many-
valued logics, and their algebraic generalisation — modal multilattice logics. In general, logical
systems can be divided into two groups: tabular and non-tabular ones. The former have finitely-
valued semantics. The latter require infinitely-valued semantics or other types of semantics: Kripke,
algebraic, topological, etc. Since three- and four-valued logics are the most popular and remarkable
representatives of finitely-valued logics (although one can find papers on five- [166, 27], six- [186,
72, 56, 27], eight- [198, 88], nine- [72], and even sixteen-valued [179] logics), we are going to focus
our attention on them. There are lots of various types of non-tabular logics: modal, intuitionistic,
linear, temporal, epistemic, doxastic, dynamic, relevant, fuzzy, etc. Since most of them have Kripke
semantics, which was originally developed for modal logics, we think that it is reasonable to focus
on them. Non-tabular modal logics have not only Kripke semantics, but many-valued ones as well
(e.g., S5 has an infinitely-valued semantics due to Prior [167], S4 has a semantics based on an
infinite sequence of finitely-valued matrices due to Dummett and Lemmon [37] based on Jaśkowski’s
[86] matrix for intuitionistic logic). Thus, at least some modal logics might be viewed as many-
valued ones. So we think that many-valued and modal logics might be called the most representative
domains of non-classical logics, and that explains our choice of this topic.

Now we would like to briefly describe the content and motivation of each of the chapters of this
work. A more detailed explanation is presented at the beginning of each chapter: all of them have
their own introductions.

Chapter 2 is devoted to proof theory for modal logics. It is a well-developed area of research.
A lot of works have been written on this topic by various scholars; we refer just to some surveys
of them. One may read Indrzejczak’s book [77] about natural deduction and sequent calculi for
modal logics, Poggiolesi’s book [157] about sequent calculi and their generalisations for modal logics,
Fitting’s book [54] about various proof systems for modal logics, and many more. We would like
to emphasise that most of the studies on proof theory for modal logics are devoted to necessity
and possibility operators (we call them standard modalities). However, one may find in the liter-
ature some other modalities that are philosophically important; we call them non-standard, such
as contingency and non-contingency, essence and accidence (these two can be in two versions: the
statement is essentially or accidentally true and the statement is essentially or accidentally false),
negated modalities: impossibility and unnecessity (which can also be viewed as paracomplete and
paraconsistent negations). There are some works on proof theory for these kinds of modalities (we
discuss them in Chapter 2), but, first, there is no systematic consideration of these modalities in
the proof-theoretic framework; second, as we will see in Chapter 2, the existing works quite often
propose not-cut-free sequent calculi and do not deal with natural deduction. We would like to fill this
gap in our dissertation and systematically apply the proof-theoretic methods developed for neces-
sity and possibility to non-standard modalities. It seems that non-standard modalities more often
than standard ones require generalisations of ordinary sequent calculi to obtain a cut elimination
theorem. So for all of them, we use either hypersequent calculi or even more general nested sequent
calculi. Using Restall’s [168] hypersequent calculus for S5 as well as Avron and Lahav’s [9] hyper-
sequent calculus for its paraconsistent version (with a paraconsistent negation defined as a classical
negation of necessity) offered by Béziau [15], we formulate hypersequent calculi for the logics with
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non-standard modalities (we call them non-standard modal logics). Using Poggiolesi’s [157] nested
sequent calculi forK and its reflexive, serial, symmetric, and transitive extensions as a starting point,
we introduce nested sequent calculi for non-standard modal logics. Then we will switch to natural
deduction: first, we give a new proof of normalisation for Segerberg’s [173] natural deduction system
for classical propositional logic formulated in a language with at least one arbitrary n-ary Boolean
connective. Our proof generalises Kürbis’ method, while the previously known one by Geuvers and
Hurkens [62] uses λ- and µ-abstractions. After that, we extend Segerberg’s system by S5 and S4
modalities: we consider necessity, possibility, impossibility (paracomplete negation), and unnecessity
(paraconsistent negation). We use a modified version of Biermann and de Paiva’s [16] rules: all our
rules are general elimination and introduction rules.

Chapter 3 is devoted to proof theory for three- and four-valued logics. It is also a well-developed
area of research; there are several methods of producing cut-free sequent calculi and natural deduction
systems for these logics. We briefly discuss them in Chapter 3. We take one of the most general and
fruitful methods, Kooi and Tamminga’s correspondence analysis [96, 189, 97], originally developed for
natural deduction. It uses the same ideas as Segerberg’s [173] approach to classical logic and develops
them further. It is a continuation of our previous research, mainly the paper [145], we generalise
its results for a wider class of three-valued logics. At that, we prove the normalisation theorem for
the considered natural deduction systems and show that they have negation subformula property,
which is a rare case in the history of correspondence analysis (the normalisation theorem has been
proved only for the formulation of intuitionistic logic with n-ary connectives obtained by Geuvers,
van der Giessen, and Hurkens [61], the formulation of classical logic with n-ary connectives obtained
by Geuvers and Hurkens [62], and a labeled natural deduction system for many-valued logics by
Englander, Haeusler, and Pereira [38]). Then we transform natural deduction systems into sequent
calculi and prove cut admissibility for them. As for four-valued logics, we provide a constructive
proof of the cut admissibility theorem for Kooi and Tamminga’s [97] sequent calculi for FDE-style
four-valued logics (Kooi and Tamminga have only a semantic proof), then we extend their result and
provide both types of proofs of cut admissibility for a wider class of FDE-style logics. Finally, we
transform sequent calculi for four-valued logics into natural deduction systems for them and prove
the normalisation theorem together with the negation subformula property.

Chapter 4 is devoted to modal three- and four-valued logics as well as to modal multilattice logics,
which are an algebraic generalisation of modal four-valued FDE-style logics. There are several ap-
proaches to modal many-valued logics, but the most common one seems to be due to Fitting [52, 53],
later further developed by Priest [164, 165], Odintsov and Wansing [137, 136], and other researchers
(see Chapter 4 for more details). The novelty of our study is that we consider many-valued non-
standard modalities and very generally formulated propositional many-valued parts of these logics:
due to correspondence analysis, we need to choose some three- or four-valued negation, and then
we are free to add any tabular three- or four-valued n-ary connective with the rules mechanically
produced by correspondence analysis. Again, both sequent and natural deduction calculi are consid-
ered, cut admissibility, normalisation, and the negation subformula property are proven. Multilattice
logic was introduced by Shramko [177] as a generalisation of Arieli and Avron’s four-valued bilat-
tice logic [2] (which in turn is a generalisation of Belnap [13, 14] and Dunn [34] FDE based on de
Morgan lattices), Shramko and Wansing’s sixteen-valued trilattice logic [179], Zaitsev’s eight-valued
tetralattice logic [198]. Modal multilattice logic was formulated by Kamide and Shramko [92] as
an extension of multilattice logic by S4-style modalities. We consider a bit different extension of
multilattice logic by S4-style modalities as well as its extension by S5-style modalities. The task of
considering S5-style modalities was left as an open problem in [92]. We provide a cut-free hyper-
sequent calculus for S5-style modal extension of multilattice logic (we consider both standard and
non-standard modalities). Then we investigate the logics with weaker modalities (K and its reflexive,
serial, symmetric, and transitive extensions): for them we use nested sequent calculi. For S5- and
S4-style logics, we investigate natural deduction systems as well.
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The results presented in Sections 2.1, 2.2, and 2.3 of Chapter 2 are mainly based on the results
published in the author’s paper [148]; the results of Sections 2.4 and 2.5 are previously unpublished.
The results described in Sections 3.1, 3.2, 3.3, and 3.4 of Chapter 3 are mainly based on the joint
paper of the author and Nils Kürbis [106] (to be more exact, Sections 3.1, 3.2 and 3.3 are entirely
written by the author; in Section 3.4, Lemmas 98 and 99 are proven by N. Kürbis, the formulations
of Definitions 95, 96, and 97 are due to N. Kürbis; as for the rest of Section 3.4, the author and N.
Kürbis have contributed equally); the results of Sections 3.5 and 3.6 are previously unpublished. The
results presented in Section 4.5 of Chapter 4 are partly published in the joint papers of the author
and Oleg Grigoriev [71, 69] (to be more exact, the notions of Tarski, Kuratowski, and Halmos are
taken from [69]; the formulation of the hypersequent calculus for MMLS5

n with standard modalities is
the result from [71]. The author and Oleg Grigoriev have contributed equally to the papers [71, 69]);
the results of Sections 4.1, 4.2, 4.3, and 4.4 are previously unpublished.



Chapter 2

Proof systems for selected modal logics

2.1 Preface
Modal logic is usually formulated in a language containing a necessity operator (denoted as �) and/or
possibility operator (denoted as ♦).1 However, in the literature one may find other modalities (and
not just temporal, deontic, epistemic, etc.). One of them is the non-contingency operator (following
Zolin [201], we denote it as B) which can be defined as follows: BA = �A∨�¬A. Thus, a proposition
is non-contingent iff it is necessary or its negation is necessary. A contingency operator (I in our
notation) is defined as follows: IA = ¬BA = ♦A ∧ ♦¬A, i.e., a proposition is contingent iff it is
possibly true and also possibly false.

Contingency may also be understood as ‘ignorance’ in epistemic logic [193] or a ‘knowing whether’
operator [40] which may be used to formalise some problems in AI [144] or microeconomics [73]. There
are alternative interpretations of contingency: doxastic (’no belief’ or ‘undecided’ [114]), deontic
(‘(moral) indifference’ [197]), spatial (‘topological border’ [184]), and provability (‘undecidable (in
Peano Arithmetic)’ [200]).

Although B and I are expressed in the standard modal language, since Montgomery and Routley
[128, 129, 130] logicians have studied non-contingent and contingent versions of the well-known modal
logics, i.e., the ones that contain B and I as primitive operators instead of � and ♦. In many
cases, their languages are less expressive than the standard one which makes the problem of their
axiomatization non-trivial. Montgomery and Routley themselves formalised contingent and non-
contingent logics based on T, S4, and S5 via Hilbert-style calculi. The basic logics, contingent and
non-contingent versions of K, have various axiomatizations developed by Humberstone [75], Kuhn
[99], Zolin [203, 201], van der Hoek and Lomuscio [193]. Transitive and Euclidian contingent and
non-contingent logics were formalised by Kuhn [99], Zolin [203], Steinsvold [184]. Fan [44, 45] paid
special attention to symmetric logics. Probably the most impressive results were obtained in the case
of reflexive non-contingent logics: Zolin [200] formulated a general method of constructing Hilbert-
style calculi for them, using the fact that �A = A ∧ BA.2 However, the non-reflexive case is still
non-trivial.3 Surprisingly, from a proof-theoretic perspective, even the relatively simple reflexive case
is problematic. Zolin [200, 201] developed sequent calculi for many non-contingent logics, including
the S5-based one, but none of them is cut-free. This fact has inspired our attempt to present cut-
free calculi for these logics with a more general framework of hypersequents rather than ordinary
sequents. We would like to pay special attention to S5-style modal logics, since S5 is known for

1The part of this Chapter devoted to S5-style logics is significantly based on the material from the author’s paper
[148].

2It is clear that his method may be adapted for contingent logics, since in reflexive logics it holds that �A = A∧¬IA
as well as ♦A = BA → A and ♦A = ¬IA → A. In non-reflexive logics, these equivalences do not hold, but, as was
shown by Pizzi [155], adding propositional quantifiers allow us to define necessity: �A = ∀p(B(p ∧BA)→ Bp).

3There are also studies of neighbourhood frames in the contingent language [42]. Among other variants of contingent
logic, let us mention its combination with public announcement logic [32].

9



10 CHAPTER 2. PROOF SYSTEMS FOR SELECTED MODAL LOGICS

having plenty of cut-free hypersequent calculi. We choose Restall’s [168] hypersequent calculus for
S5, since it is one of the simplest calculi for this logic.4 We will also consider logics weaker than
S5, that is K and its reflexive, serial, transitive, and symmetric extensions. For these logics we will
use even more general machinery than hypersequent calculi: nested sequent calculi in the spirit of
Poggiolesi’s results [157] for the logics with �. We do not consider Euclidean extensions of K because
of some limitations of Poggiolesi’s approach.

Aside from contingency and non-contingency, there are the concepts of essence and accident. A
sentence is essentially true iff it is either false or necessarily true, i.e., if it is true, then it is necessarily
true. A sentence is accidentally true iff it is true, but not necessarily true (i.e., its falsity is possible).
Thus, the operators of essential and accidental truth (we denote them ◦ and •, following Marcos [118])
are defined as follows: ◦A = ¬A∨�A = A→ �A and •A = ¬◦A = A∧¬�A = A∧♦¬A. We should
emphasize two points here. First, we follow Marcos’ approach to essence and accidence, which is the
de dicto one, while Fine [47, 48, 49] developed the de re approach. Second, as Gilbert and Venturi
[63, p. 888] note, it is important not to conflate ‘the notion of being accidentally/essentially true and
the notion of being accidental/essential in the sense of being mutable or immutable’. They argue that
Marcos deals with ‘accidentally/essentially true’, although he himself does not emphasise it. They
introduce their own accident and essence operators: AA = •A ∨ •¬A and EA = ¬AA = ◦A ∨ ◦¬A.

‘As for ‘accidentally true’ and ‘essentially true’, these can now be given straightforward
formalizations as A ∧ AA and A ∧ EA, respectively.’ <...> ‘As a final remark, one might
wonder what the logic of these new operators is. But the logic of A and E is the logic of ◦
and •, because all four of these operators are interdefinable (one can define •A as A∧AA,
as we mentioned above). Therefore, our ultimate claim is that the formal framework for
exploring notions of essence and accident proposed by Marcos in [118] is a good one, but
more precision is required to separate, and formalize, all of the desirable concepts within
this sphere.’ [63, p. 890, the notation adjusted]

We consider the modalities ◦ and •, since the logic of A and E is reducible to them. Additionally,
we consider ‘accidentally/essentially false’ modalities, denoting them as ◦̃ and •̃, respectively, and
defining them as ◦̃A = ◦¬A = ¬A→ �¬A and •̃A = •¬A = ¬A∧♦A. So a proposition is essentially
false iff its falsity implies the necessity of its falsity, and a proposition is accidentally false iff it is
false, but its truth is possible.

In accidentally/essentially true logics, we have the following equalities in the case of serial frames:
�A = A ∧ ¬•A, ♦A = ¬•A → A, �A = A ∧ ◦A, and ♦A = ◦A → A [41]. It simplifies the
task of providing an axiomatization of these logics, but the non-serial case is non-trivial as well
as well-behaved (hyper)sequent calculi have not been developed for these logics (to the best of our
knowledge). As for Hilbert-style calculi for them, see [41, 183, 118, 43]. In [43, 46] a combination of
accident and contingent logics is suggested. Labelled (i.e., using explicit semantic elements) analytic
tableaux were developed by Venturi and Yago [192] for essence and contingent logics. Notice that
our calculi do not have any explicit semantic elements (see Poggiolesi [157] for the advantages of such
calculi). Let us also mention that the very notion of accidental truth was used by Small [181] in the
context of Gödel’s ontological proof.

The idea to formulate a paraconsistent logic over S5 is due to Jaśkowski [85]. Taking his inspi-
ration from Jaśkowski’s work, Béziau [15] presented a paraconsistent logic Z which is the result of
the replacement of Boolean negation in classical logic with a paraconsistent one defined as negated
necessity. Thus, we have ∼A = ¬�A, where ∼ is paraconsistent negation, as well as �A = ¬∼A and

4Pioneers in the development of hypersequent calculi in general and for S5 in particular are Mints [126], Pottinger
[160], and Avron [4]. Later on, different hypersequent calculi for S5 were presented by Poggiolesi [156], Lahav [110],
Kurokawa [107], Restall [168], Bednarska and Indrzejczak [12], and Indrzejczak [83]. See [12, 84] for a survey and
comparison of these calculi. See also recent Mohammadi and Aghaei’s paper [127] on rooted hypersequent calculi for
S5.
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♦A = ∼¬A. Marcos [118] generalized Béziau’s approach: he considered paraconsistent logics based
on modal logics which are weaker than S5 and investigated a paracomplete negation (we denote it
∼̇) defined as ∼̇A = ¬♦A (hence, �A = ∼̇¬A and ♦A = ¬∼̇A). Avron and Lahav [9] developed
a cut-free hypersequent calculus for Z which is similar to Restall’s one for S5. We mention their
calculus in the next sections (and additionally present a constructive cut elimination proof for it)
to make our study more complete. Moreover, we introduce a related calculus for a paracomplete
version of Z which we call Ż and is understood as the result of the replacement of Boolean negation
in classical logic with the paracomplete negation ∼̇. Coniglio and Prieto-Sanabria [29] formulated a
paraconsistent logic LTop with ∼ (at that Boolean negation was left in the language) on the basis of
S4. We formulate a cut-free nested sequent calculus for it. For a systematic study of proof systems
for logics with negative modalities, see the paper [109] by Lahav, Marcos and Zohar. However, it is
not the case that all the calculi presented there are cut-free.

As for natural deduction systems for modal logics, to the best of our knowledge, the existing
research is devoted (mainly) to consideration of logics with � and ♦. At that point, there are several
different approaches to modal natural deduction. In general, in the case of natural deduction systems
we can distinguish two main approaches: Jaśkowski-Fitch-style linear format and Gentzen-style tree-
format; one may also consider Suppes-style linear format as a separate approach. In the case of
modal natural deduction, an additional classification can be done: following Indrzejczak [77], we
can divide natural deduction systems based on the modalization of assumptions, the modalization
of rules, the modalization of the reiteration rule, and the application of modal assumptions, which
is a variant of modalization of the reiteration rule. Among the representatives of the first approach
(modalization of assumptions) are Curry [31], Borkowski and S lupecki [20], Prawitz [161], Corcoran
[30], Satre [171]. At that Curry and Prawitz followed Gentzen-style tree format, while Borkowski,
S lupecki, and Corcoran applied Jaśkowski-Fitch-style linear format, Satre used Suppes-style format.
The approach based on modalization of rules is due to Bull and Segerberg [23]; they use Jaśkowski-
Fitch-style linear format. The approach based on modalization of the reiteration rule is due to Fitch
[50, 51], it is based on Jaśkowski-Fitch-style linear format, and seems to be the most popular way
of constructing natural deduction for modal logics. Fitch’s approach can be applied to many modal
logics; it was further developed by Siemens [176] and generalised by Fitting [54] whose approach is
the application of modal assumptions. One may find more details in [77].

We just observed that an advantage of tree format is the possibility of considering the normali-
sation theorem, which is especially important for us, and that is why we choose such an approach.
The first attempt to prove normalisation for modal logics is due to Prawitz [161]: he considered S4
and S5 as well as their first-order and minimal and intuitionistic versions. However, later on, some
mistakes were found in his proofs by Medeiros and Da Paz [120]. Among the attempts to provide
the proof of normalisation for modal logics, we would like to emphasise Biermann and de Paiva’s [16]
approach, which gives a simple formulation of the rules for intuitionistic S4 and proves normalisation
for it. Later on, Kürbis [100] considers their rules in the framework of classical S4 and shows how to
adapt them for S5. A disadvantage of tree format in the case of modal logics and, more generally, of
the approach based on modalization of assumptions is its limited scope of application: it works only
for S4 and S5. As a result, we will consider natural deduction systems only for these two logics.

2.2 Preliminaries: semantics, Hilbert-style systems, and ordi-
nary sequent calculi

Let ♣ ∈ {�,♦,B,I, ◦, •, ◦̃, •̃,∼, ∼̇}, P be a set {p0, p1, . . .} of propositional variables, A be the
alphabet 〈P ,♣,¬,∧,∨,→,↔, (, )〉. We fix a modal language L♣ with the alphabet A which forms
the set F♣ of all L♣-formulas in a standard inductive way. In some cases we use bimodal languages,
e.g. L�♦, defined in an analogous way.



12 CHAPTER 2. PROOF SYSTEMS FOR SELECTED MODAL LOGICS

Consider the language L�♦. Let us describe semantics of the modal logic K and its extensions. A
triple 〈W,R, ϑ〉 is said to be an K-model iff W 6= ∅, R ⊆ W ×W , and ϑ is a mapping from W ×F�♦
to {1, 0} such that it preserves classical conditions for truth-value connectives and for any A ∈ F�♦
and x ∈ W we have:

− ϑ(�A, x) = 1 iff ∀y∈W (R(x, y) implies ϑ(A, y) = 1),

− ϑ(♦A, x) = 1 iff ∃y∈W (R(x, y) and ϑ(A, y) = 1).

A formula A is true in a world w ∈ W iff ϑ(A,w) = 1. A formula A follows from the set of
formulas Γ (Γ |=K A) iff for every K-model 〈W,R, ϑ〉 and every w ∈ W , if any B ∈ Γ is true in w,
then A is true in w. A formula is K-valid iff it follows from the empty set of formulas.

A Hilbert-style calculus for K contains the subsequent axioms (to be more exact, schemes of
axioms) and rules:

− all schemes of axioms of classical propositional logic,

− �(A→ B)→ (�A→ �B) (the K-axiom),

− ♦A↔ ¬�¬A,

− A A→ B

B
(modus ponens),

− `K A

`K �A
(Gödel’s rule or necessitation rule).

The notion of the proof is defined in a standard way as a sequence of formulas that are either
axioms or are obtained from the previous ones by the rules.

Before we introduce a sequent calculus for K, let us declare that following Restall [168] by a
sequent, we understand a pair written as Γ ⇒ ∆, where Γ and ∆ are finite multisets of formulas5
Let us recall the formulation of a sequent calculus for classical propositional logic CPL6. The calculus
has the following axiom: A ⇒ A. Its structural rules are as follows (contraction, weakening, and
cut):

(C⇒)
A,A,Γ⇒ ∆

A,Γ⇒ ∆
(⇒C)

Γ⇒ ∆, A,A

Γ⇒ ∆, A
(W⇒)

Γ⇒ ∆

A,Γ⇒ ∆
(⇒W)

Γ⇒ ∆

Γ⇒ ∆, A

(Cut)
Γ⇒ ∆, A A,Θ⇒ Λ

Γ,Θ⇒ ∆,Λ

The logical rules are as follows:

(¬ ⇒)
Γ⇒ ∆, A

¬A,Γ⇒ ∆
(⇒ ¬)

A,Γ⇒ ∆

Γ⇒ ∆,¬A

(∧ ⇒)
A,B,Γ⇒ ∆

A ∧B,Γ⇒ ∆
(⇒ ∧)

Γ⇒ ∆, A Γ⇒ ∆, B

Γ⇒ ∆, A ∧B

(∨ ⇒)
A,Γ⇒ ∆ B,Γ⇒ ∆

A ∨B,Γ⇒ ∆
(⇒ ∨)

Γ⇒ ∆, A,B

Γ⇒ ∆, A ∨B
5Alternatively, one could use sets of formulas or lists of formulas, which would lead to the other choice of structural

rules: the option with sets makes contraction rules superfluous, and the option with lists of formulas requires exchange
rules.

6There are several options; we use the restriction for the case of sequents of Restall’s hypersequent calculus [168],
which plays an important role in the further consideration connected with the study of S5-style logics.
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(→⇒)
Γ⇒ ∆, A B,Θ⇒ Λ

A→ B,Γ,Θ⇒ ∆,Λ
(⇒→)

A,Γ⇒ ∆, B

Γ⇒ ∆, A→ B

(↔⇒)
B,Γ⇒ ∆, A A,Θ⇒ Λ, B

Γ,Θ⇒ ∆,Λ, A↔ B
(⇒↔)

A,B,Γ⇒ ∆ Θ⇒ Λ, A,B

A↔ B,Γ,Θ⇒ ∆,Λ

Definition 1 (Proof). By a proof in the above presented sequent calculus for CPL we mean a tree
which nodes are sequents such that leaves are axioms and other nodes are obtained from the upper
ones by applications of the rules of the calculus. We write `CPL S iff there is a proof of a sequent S
in the sequent calculus for CPL.

Definition 2 (An admissible and a derivable rule). A rule S1,...,Sn

S
, where S1, . . . Sn, S are sequents is

admissible in a sequent calculus SC iff `SC S1, . . . ,`SC Sn implies `SC S, and derivable in a sequent
calculus SC iff S1, . . . , Sn `SC S.

The rule (Cut) is admissible in the above-presented calculus.
As for a sequent calculus forK, it can be obtained from the one for classical propositional logic by

adding the rule (⇒K �), if K is formulated in the language L�; the rule (♦⇒K), if K is formulated
in the language L♦; and the rules (⇒∗K �) and (♦⇒K∗), if K is formulated in the language L�♦:

(⇒K �)
Γ⇒ A

�Γ⇒ �A
(♦⇒K)

A⇒ ∆

♦A⇒ ♦∆

(⇒∗K �)
Γ⇒ ∆, A

�Γ⇒ ♦∆,�A
(♦⇒∗K)

A,Γ⇒ ∆

♦A,�Γ⇒ ♦∆

If we formulate K in the language L�♦ and instead of (⇒∗K �) and (♦ ⇒K∗) will use (⇒K �)
and (♦ ⇒K), then we fail to prove the formulas �A ↔ ¬♦¬A and ♦A ↔ ¬�¬A. This peculiarity
was noticed by Kripke [98].

The extensions of the modal logic K are obtained by the restriction of the accessibility relation R
(from the semantic point of view) or adding to the Hilbert-style calculus for K axioms (or schemes
of axioms) corresponding to these semantic restrictions (from the syntactical point of view). The
most popular conditions for R are as follows (we give them together with the axioms corresponding
to them):

− reflexivity, ∀xR(x, x); T-axiom, �A→ A;

− seriality, ∀x∃yR(x, y); D-axiom, �A→ ♦A;
− symmetry, ∀x, y(R(x, y) implies R(y, x)); B-axiom, A→ �♦A;
− transitivity, ∀x, y, z

(
(R(x, y) and R(y, z)) implies R(x, z)

)
; 4-axiom, �A→ ��A;

− Euclideaness, ∀x, y, z
(
(R(x, y) and R(x, z)) implies R(y, z)

)
; 5-axiom, ♦A→ �♦A.

The combinations of these conditions (axioms) and the logicK itself can produce only 15 different
logics: K,D, T,K4, D4, S4 (=KT4), K5, D5, K45, D45, KB,DB, TB,KB45, and S5 (=KT5)
(see, e.g. [28]). From the names of these logics it is possible to extract which axioms should be added
to K to obtain them. Notice that in the case of S5 all these five conditions hold and they can
be replaced with the universality condition: ∀x, yR(x, y). In the other words, R = W ×W . As a
consequence, in S5 we may consider models which are pairs of the form 〈W,ϑ〉 and truth conditions
for � and ♦, being transformed as follows:

− ϑ(�A, x) = 1 iff ∀y∈Wϑ(A, y) = 1,

− ϑ(♦A, x) = 1 iff ∃y∈Wϑ(A, y) = 1.
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To obtain a sequent calculus for T we need to add the following rules to K7:

(�⇒T)
A,Γ⇒ ∆

�A,Γ⇒ ∆
(⇒T ♦)

Γ⇒ ∆, A

Γ⇒ ∆,♦A

In the description of sequent calculi for other logics, we follow Fitting’s approach [54] in Indrze-
jczak’s presentation [77]. Consider the following rules:

(D⇒)
Γ? ⇒ ∆\

Γ⇒ ∆
(⇒ �?

\ )
Γ? ⇒ ∆\, A

Γ⇒ ∆,�A
(♦⇒?

\ )
A,Γ? ⇒ ∆\

♦A,Γ⇒ ∆

where Γ? and ∆\ are defined as follows, depending on the logic which is under consideration:

Logic Γ? ∆\

K, T, D {C | �C ∈ Γ} {D | ♦D ∈ ∆}
S4 {�C | �C ∈ Γ} {♦D | ♦D ∈ ∆}

K4, D4 {C | �C ∈ Γ} ∪ {�C | �C ∈ Γ} {D | ♦D ∈ ∆} ∪ {♦D | ♦D ∈ ∆}
KB, TB, DB {C | �C ∈ Γ} ∪ {♦C | C ∈ Γ} {D | ♦D ∈ ∆} ∪ {�D | D ∈ ∆}

S5 {�C | �C ∈ Γ} ∪ {♦C | ♦C ∈ Γ} {♦D | ♦D ∈ ∆} ∪ {�D | �D ∈ ∆}
KB4 {C | �C ∈ Γ} ∪ {�C | �C ∈ Γ} {D | ♦D ∈ ∆} ∪ {♦D | ♦D ∈ ∆}

∪ {♦C | C ∈ Γ} ∪ {�D | D ∈ ∆}
K5, D5 {C | �C ∈ Γ} ∪ {♦C | ♦C ∈ Γ} {D | ♦D ∈ ∆} ∪ {�D | �D ∈ ∆}
K45, D45 {C | �C ∈ Γ} ∪ {�C | �C ∈ Γ} {C | �C ∈ Γ} ∪ {�C | �C ∈ Γ}

∪ {♦C | C ∈ Γ} ∪ {♦C | ♦C ∈ Γ} ∪ {C | ♦C ∈ Γ} ∪ {♦C | ♦C ∈ Γ}

Each of the 15 logics has the rules (⇒ �?
\ ) and (♦⇒?

\ ); if the logic in question is serial, it contains
the rule (D⇒) as well; if the logic in question is reflexive, it contains the rules (⇒ �T) and (♦⇒T)
as well.

As Takano pointed out [188], these modal logics could be divided into three groups depending
on the properties of their sequent calculi. The first group consists of K, D, T, K4, D4, S4, K45,
and D45. These logics “have sequent calculi with the cut-elimination property (and so
the subformula property)” [188, p. 116]. The second group contains the logics KB, DB, TB, KB4,
and S5 which “have sequent calculi with the subformula property but without the cut-elimination
property” [188, p. 116]. The third group consists of K5 and D5. They have sequent calculi without
cut elimination and subformula property. However, Takano presents a modified subformula property
for these logics.

As for natural deduction systems for modal logics, let us present the systems for S4 and S5 only,
since only these logics have tree-format natural deduction systems. First of all, let us introduce
some natural deduction system for classical propositional logic. We are going to describe two such
systems: one introduced by Gentzen [59] and another by Milne [125]. The former calculus is
an example of a natural deduction system with ordinary introduction and elimination rules (except
disjunction elimination, which is a general elimination rule), while the latter calculus is an example
of a natural deduction system with general introduction and general elimination rules only. Note
also that Milne’s system has been used by Kürbis [103] for his normalisation proof.

Gentzen’s system NK (to be more exact, its propositional fragment) contains the following infer-
ence rules, where ⊥ stands for a constant falsum:

(∨I1)

D
A

A ∨B
(∨I2)

D
B

A ∨B
(∨Ea,b)

[A]a [B]b

D0 D1 D2

A ∨B C C

C
7If K is formulated in L�, we add (� ⇒T); if in L♦, we add (⇒T ♦); if in L�♦, we add both rules, due to the

rules (⇒∗K �) and (♦⇒K∗) we do not need any special version of (�⇒T) and (⇒T ♦).
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(∧I)

D1 D2

A B

A ∧B
(∧E1)

D
A ∧B
A

(∧E2)

D
A ∧B
B

(→ I)a

[A]a

D
B

A→ B
(→ E)

D1 D2

A→ B A

B

(⊥I)

D1 D2

A ¬A
⊥

(⊥E)

D
⊥
A

(¬I)a

[A]a

D
⊥
¬A

(¬E)

D
¬¬A
A

As Gentzen [59] notes, the rule (¬E) can be replaced with an axiom A∨¬A. If one deletes (¬E),
then one gets a natural deduction system for intuitionistic logic.

Definition 3 (Deduction in NK ). 1. The formula occurrence A is a deduction in NK of A from
the undischarged assumption A.

2. If D1 and D2 are deductions in NK, then the applications of the above-mentioned rules are
deductions of B in NK from the undischarged assumptions in D1 and D2 apart from those in
the assumption classes a and b, which are discharged.

3. Nothing else is a deduction in NK.

Milne’s natural deduction system has the following inference rules:

(∧I)a

[A ∧B]a

D1 D2 D3

A B C

C
(∧E)a,b

[A]a[B]b

D1 D2

A ∧B C

C

(∨I1)a

[A ∨B]a

D1 D2

A C

C
(∨I2)a

[A ∨B]a

D1 D2

B C

C
(∨E)a,b

[A]a [B]b

D1 D2 D3

A ∨B C C

C

(→ I)a

[A→ B]a

D1 D2

B C

C
(TR)a,b

[A]a [A→ B]b

D1 D2

C C

C
(→ E)a

[B]a

D1 D2 D3

A→ B A C

C

(¬I)a,b

[A]a [¬A]b

D1 D2

C C

C
(¬E)

D1 D2

¬A A

C

The notion of a deduction is defined in a similar way to how it is defined in Gentzen’s NK. As
we can see, general introduction rules for a connective ∗ “instead of introducing formulas with a
connective ∗ as main operator as the conclusion of the rule, they permit discharge of assumptions
of that form” [104, p. 14226] and as for their conclusions they have formulas derivable from the
formulas with a connective ∗ as main operator. Similarly, general elimination rules for a connective
∗ instead of having as their conclusions some subformulas of formulas with a connective ∗ as main
operator have some formulas derivable from subformulas of formulas with a connective ∗.

As for natural deduction modal rules, we use the rules suggested by Bierman and de Paiva [16]
as a modification of Prawitz’s [161] ones more suitable for proving the normalisation theorem.
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(�I)a

[B1 . . . Bm]a

D1 . . .Dm D
B1 . . . Bm A

�A
(�E)

D
�A

A

(♦I)

D
A

♦A
(♦E)a

[A,B1 . . . Bm]a

D0 D1 . . .Dm E
♦A B1 . . . Bm C

C

B1, . . . , Bm are exactly the undischarged assumptions in D in (�I) and A,B1, . . . , Bm in E in
(♦E). For S4, B1, . . . , Bm are required to be of the form �D1, . . . ,�Dm and C to be of the form
♦D. For S5, A,B1, . . . , Bm, C are required to be modalized. An adaptation of these rules for S5
was given by Kürbis [100].

Biermann and de Paiva [16] originally formulated their rules for intuitionistic S4 with both � and
♦ in the language. In classical S4 built in this language, it seems impossible to prove the formulas
�A → ¬♦¬A, ♦A → ¬�¬A, ¬♦¬A → �A, and ¬�¬A → ♦A with these rules (intuitionistic S4
does not have these formulas as its provable formulas in contrast to classical S4). So we consider
classical S4 built in the language with �, but without ♦. Biermann and de Paiva’s rules for � are
sound and complete in the classical case as well. As for the rules for ♦, since they involve the use of
� in the language and we cannot have both � and ♦ in classical S4, we do not consider the rules
for ♦ in S4. In S5, the proviso for the rules is more liberal (A,B1, . . . , Bm, C are required to be
modalized), so we can consider the rules for ♦ in classical S5. However, again, we cannot have both
modalities in the language.

We write LB for the non-contingency version of the logic L, i.e., the logic over L-models in the
language LB. Thus, we have the case for B instead of the cases for � and ♦:

− V (BA, x) = 1 iff ∀y∈W (R(x, y) implies V (A, y) = 1) or ∀y∈W (R(x, y) implies V (A, y) = 0).

In the case of S5, this condition can be simplified:

− V (BA, x) = 1 iff ∀y∈WV (A, y) = 1 or ∀y∈WV (A, y) = 0.

The Hilbert-style calculi for reflexive non-contingency logics were developed by Montgomery and
Routley [128, 129, 130] and Zolin [200]. The Hilbert-style calculus for the logic TB contains the
following axioms and rules (the names of the axioms are due to Zolin [201, 203]):

− all schemes of axioms of classical propositional logic,

− A→
(
B(A→ B)→ (BA→ BB)

)
(weak distributivity),

− BA↔ B¬A (mirror axiom),

− A A→ B

B
(modus ponens),

− ` A
` BA

(Gödel’s rule for B).

The extensions of TB can be formalised as follows:

− TBB = TB + A→ B(BA→ A),

− S4B = TB +BA→ BBA,
− S5B = TB +BBA.
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KB was first axiomatized by Humberstone [75], K4B by Kuhn [99]. We give Zolin’s axiomatization
[203, 201] for them and K5B. The Hilbert-style calculus for the logic KB contains the following axioms
and rules:

− all schemes of axioms of classical propositional logic,

− B(A↔ B)→ (BA↔ BB) (equivalence),

− BA↔ B¬A (mirror axiom),

− BA→
(
B(B → A) ∨ (A→ C)

)
(dichotomy),

− A A→ B

B
(modus ponens),

− ` A
` BA

(Gödel’s rule for B).

The extensions of KB can be formalised as follows:

− K4B = KB +BA→ B(B → BA) (weak transitivity),

− K5B = KB + ¬BA→ B(B → ¬BA) (weak Euclideanness),

− K45B = K4B + ¬BA→ B(B → ¬BA).

The Hilbert-style calculus for KBB was developed by Fan, Wang, and Ditmarsch [39]:

− all schemes of axioms of classical propositional logic,

−
(
B(C → A) ∧B(¬C → A)

)
→ BA,

− BA→
(
B(A→ B) ∨B(¬A→ C)

)
,

− BA↔ B¬A,

− A→ B
((
BA ∧B(A→ B) ∧ ¬BB

)
→ C

)
,

− A A→ B

B
,

− ` A↔ B

` BA↔ BB
.

Gödel’s rule for B is admissible in this system.
As follows from [203], serial non-contingency logics coincide with their non-serial companions, so

LB = LDB, for any logic L.
Non-cut-free sequent calculi for non-contingency logics were developed by Zolin [200, 201]. To

obtain sequent calculi for reflexive non-contingency logics, one needs to extend a sequent calculus for
classical propositional logic by the following rules [201]:

(⇒B0
T )

A,Γ⇒ ∆

Γ,BΓ,B∆⇒ ∆,BA
(⇒B1

T )
Γ⇒ ∆, A

Γ,BΓ,B∆⇒ ∆,BA

(⇒B0
S4)

A,Γ,BΓ,B∆⇒ ∆

Γ,BΓ,B∆⇒ ∆,BA
(⇒B1

S4)
Γ,BΓ,B∆⇒ ∆, A

Γ,BΓ,B∆⇒ ∆,BA

(⇒B0
S5)

A,Γ,BΓ,B∆⇒ ∆,BΛ

Γ,BΓ,B∆⇒ ∆,BΛ,BA
(⇒B1

S5)
Γ,BΓ,B∆⇒ ∆,BΛ, A

Γ,BΓ,B∆⇒ ∆,BΛ,BA
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(⇒B0
TB)
{A,Γ,Φ′ ⇒ Φ,BΨ′,BΨ,∆}Σ=Φ∪Ψ

Σ′=Φ′∪Ψ′

Γ,BΓ,B∆,Σ′ ⇒ ∆,Σ,BA
(⇒B1

TB)
{Γ,Φ′ ⇒ Φ,BΨ′,BΨ,∆, A}Σ=Φ∪Ψ

Σ′=Φ′∪Ψ′

Γ,BΓ,B∆,Σ′ ⇒ ∆,Σ,BA

As for non-reflexive logics, Zolin offered the following non-cut-free sequent calculi for KB and
K4B (obviously, they contain rules for classical propositional logic).

(⇒B∨)
Γ⇒ ∆,BA

Γ⇒ ∆,B(B → A),B(A→ C)
(⇒B↔)

Γ, A⇒ B,∆ Γ, B ⇒ A,∆

Γ,BA⇒ BB,∆

(⇒BK)
Γ⇒ A

B(Γ ∨ A)⇒ BA
(⇒BK4)

Γ,BΛ⇒ A

B(Γ ∨ A),BΛ⇒ BA

Zolin also developed sequent calculi for GLB and GrzB [200, 201]. He [202] formulated as a
hypothesis sequent rules for K5B and K45B, but did not establish, if they were enough for com-
pleteness.

(⇒BK5)
Γ⇒ B∆, A

B(Γ ∨ A)⇒ B∆,BA
(⇒BK45)

Γ,BΛ⇒ B∆, A

B(Γ ∨ A),BΛ⇒ B∆,BA

The contingency version of the modal logic L is built in the language LI over K-frames and is
denoted as LI. A semantic condition for contingency operator is presented below:

− V (IA, x) = 1 iff ∃y∈W (R(x, y) and V (A, y) = 1) and ∃y∈W (R(x, y) and V (A, y) = 0).

For S5 we have a simplified version:

− V (IA, x) = 1 iff ∃y∈WV (A, y) = 1 and ∃y∈WV (A, y) = 0.

Hilbert-style calculi for contingency logics can be obtained from calculi for non-contingency one
due to the equalities IA = ¬BA and BA = ¬IA. For example, Montgomery and Routley [128] give
the following system for TI:

− all schemes of axioms of classical propositional logic,

− A→
(
¬I(A→ B)→ (IB → IA)

)
,

− IA↔ I¬A,

− A A→ B

B
,

− ` A
` ¬IA

.

Similarly, sequent calculi can be obtained from the ones for non-contingency logics.
The essentially and accidentally true versions of the modal logic L, L◦ and L•, respectively, are

built over L-frames in languages L◦ and L•. The appropriate semantic conditions are as follows:

− ϑ(◦A, x) = 1 iff ϑ(A, x) = 0 or ∀y∈W (R(x, y) implies ϑ(A, y) = 1).

− ϑ(•A, x) = 1 iff ϑ(A, x) = 1 and ∃y∈W (R(x, y) and ϑ(A, y) = 0).

Simplified versions for S5◦ and S5• are given below:

− ϑ(◦A, x) = 1 iff ϑ(A, x) = 0 or ∀y∈Wϑ(A, y) = 1.

− ϑ(•A, x) = 1 iff ϑ(A, x) = 1 and ∃y∈Wϑ(A, y) = 0.

Hilbert-style calculi for the minimal logic of essence and accidence K◦• was developed by Marcos
[118]. It extends classical propositional logic by the following axioms and rules:
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− (◦A ∧ ◦B)→ ◦(A ∧B),

− ((A ∧ ◦A)) ∨ ((B ∧ ◦B))→ ◦(A ∨B),

− •A↔ ¬◦A,

− •A→ A,

− ` A
` ◦A

,

− ` A↔ B

` ◦A↔ ◦B
.

Fan [41] provides axiomatization of the minimal essence logic K◦ (a •-free fragment of K◦•) as
an extension of classical propositional logic by the following axioms and rules (we may agree that >
is p→ p, for some propositional variable p):

− ◦>,

− ¬A→ ◦A,

− (◦A ∧ ◦B)→ ◦(A ∧B),

− ` A→ B

` (◦A ∧ A)→ ◦B
.

Fan [41] gives axiomatizations for three extensions of K◦:

− K4◦ = K◦ + (◦A ∧ A→ ◦◦A),

− KB◦ = K◦ + A→ ◦(◦¬A→ ◦A),

− KB5◦ = KB◦ + ¬◦¬A→ ◦(◦¬A→ ◦A).

For other Hilbert-style axiomatizations of essence and accidence logics see [183, 46].
The essentially and accidentally false versions of the modal logic L, L◦̃ and L•̃, respectively, are

built over L-frames in languages L◦̃ and L•̃. We have the following semantic conditions:

− ϑ(◦̃A, x) = 1 iff ϑ(A, x) = 1 or ∀y∈W (R(x, y) implies ϑ(A, y) = 0),

− ϑ(•̃A, x) = 1 iff ϑ(A, x) = 0 and ∃y∈W (R(x, y) and ϑ(A, y) = 1).

And their simplified versions for S5-style logics:

− ϑ(◦̃A, x) = 1 iff ϑ(A, x) = 1 or ∀y∈Wϑ(A, y) = 0,

− ϑ(•̃A, x) = 1 iff ϑ(A, x) = 0 and ∃y∈Wϑ(A, y) = 1.

The logic L∼ is built over L-frames in the language L∼. The ¬-free fragment of S5∼ is Béziau’s
[15] paraconsistent logic Z. The logic L∼̇ is built over L-frames in the language L∼̇. We introduce a
paracomplete companion of Z as the ¬-free fragment of S5∼̇ and call it Ż. The semantic conditions
for paraconsistent and paracomplete negations are as follows:

− ϑ(∼A, x) = 1 iff ∃y∈W (R(x, y) and ϑ(A, y) = 0),

− ϑ(∼̇A, x) = 1 iff ∀y∈W (R(x, y) implies ϑ(A, y) = 0).

For Z and Ż simplified version can be provided:

− ϑ(∼A, x) = 1 iff ∃y∈Wϑ(A, y) = 0,

− ϑ(∼̇A, x) = 1 iff ∀y∈Wϑ(A, y) = 0.

Hilbert-style calculus of Z was developed by Béziau [15]. It has all the axioms of the positive
fragment of CPL, modus ponens, and the following additional axioms and rules:
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− A ∨ ∼A,
− ∼∼A→ A,
−
(
(A ∧ ∼B) ∧ ∼(A ∧ ∼B)

)
→ (A ∧ ∼A),

− ∼(A ∧B)→ (∼A ∨ ∼B),

− ` A→ B

` ∼(A ∧ ∼B)

Omori and Waragai [139] proved that axioms (1) and (4) were derivable from the other ones. A
cut-free hypersequent calculus for Z was found by Avron and Lahav [9]: we introduce it in the next
section.

Coniglio and Prieto-Sanabria [29] formulated the paraconsistent logic LTop (in our terms S4∼)
with topological semantics on the basis of the modal logic S4. Hilbert-style calculus for LTop [29]
consists of the following axioms and rules (∧ and ∨ are defined in a standard way via ¬ and →):

− A→ (B → A),

− A→ (B → C)→ ((A→ B)→ (A→ C)),

− (¬A→ B)→ ((¬A→ ¬B)→ A),

− A→ ∼¬A,

− ∼¬∼¬A→ ∼¬A,

− ∼(A ∧B)→ (∼A ∨ ∼B),

− ¬∼(A→ A),

− A A→ B

B
,

− A→ B

∼B → ∼A
,

− A B

A ∧B
.

Sequent calculi for the logics with negated modalities were formulated by Dodó and Marcos [33]
as well as by Lahav, Marcos, and Zohar [109]. The rules for ∼ and ∼̇ for the case of K∼∼̇ were
formulated by Dodó and Marcos [33].

(∼ ⇒K)
Γ⇒ ∆, A

∼A, ∼̇∆⇒ ∼Γ
(⇒ ∼̇K)

A,Γ⇒ ∆

∼̇∆⇒ ∼Γ, ∼̇A

Lahav, Marcos, and Zohar [109] further developed this approach and found the rules for extensions
of K∼∼̇: D∼∼̇ extends K∼∼̇ by (∼∼̇D), T∼∼̇ extends K∼∼̇ by (∼̇ ⇒T) and (⇒ ∼T), KB∼∼̇ extends
K∼∼̇ by (⇒ ∼̇B) and (∼ ⇒B), K4∼∼̇ extends K∼∼̇ by (⇒ ∼̇4) and (∼ ⇒4), KDB∼∼̇ extends KB∼∼̇

by (∼∼̇DB), KD4∼∼̇ extends K4∼∼̇ by (∼∼̇D4). As follows from the shape of these rules, both ∼
and ∼̇ have to be present in the language. Our calculi do not have this restriction. The calculi for
K∼∼̇, D∼∼̇, T∼∼̇, K4∼∼̇, KD4∼∼̇ are shown to enjoy cut admissibility.

(∼∼̇D)
Γ⇒ ∆

∼̇∆⇒ ∼Γ
(∼̇ ⇒T)

Γ⇒ ∆, A

∼̇A,Γ⇒ ∆
(⇒ ∼T)

A,Γ⇒ ∆

Γ⇒ ∆,∼A

(∼∼̇DB)
∼Γ,Π⇒ ∆, ∼̇Λ

Λ, ∼̇∆⇒ Γ,∼Π
(⇒ ∼̇B)

A,Γ,∼Π⇒ ∆, ∼̇Λ

∼̇∆,Λ⇒ ∼Γ,Π, ∼̇A
(∼ ⇒B)

Γ,∼Π⇒ ∆, ∼̇Λ, A

∼A, ∼̇∆,Λ⇒ ∼Γ,Π

(∼∼̇D4)
∼̇Γ,Π⇒ ∆,∼Λ

∼̇Γ, ∼̇∆⇒ ∼Π,∼Λ
(⇒ ∼̇4)

A, ∼̇Γ,Π⇒ ∼∆,Λ

∼̇Γ, ∼̇Λ⇒ ∼∆,∼Π, ∼̇A
(∼ ⇒4)

∼̇Γ,Π⇒ ∼∆,Λ, A

∼A, ∼̇Γ, ∼̇Λ⇒ ∼∆,∼Π

2.3 Cut-free hypersequent calculi for S5-style logics with non-
standard modalities

An ordered pair written as Γ ⇒ ∆, where Γ and ∆ are finite multisets of formulas (of one of the
languages considered in this work), is a sequent.8 A finite multiset of sequents written as Γ1 ⇒ ∆1 |
. . . | Γn ⇒ ∆n is a hypersequent. Let 〈W,ϑ〉 be an S5-model. A sequent Γ ⇒ ∆ is true in a world

8This section is significantly based on the material from the author’s paper [148].
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w ∈ W iff ϑ(A,w) = 0, for some A ∈ Γ, or ϑ(B,w) = 1, for some B ∈ ∆. A sequent is valid in 〈W,ϑ〉
iff it is true in each w ∈ W . A sequent S follows from the set of sequents S iff for each S5-model
〈W,ϑ〉, if each S ′ ∈ S is valid 〈W,ϑ〉, then S is valid in it as well. A sequent is S5-valid iff it is valid
in each S5-model. A hypersequent H is valid in 〈W,ϑ〉 (or 〈W,ϑ〉 is a model of H) iff at least one of
the components of H is valid in 〈W,ϑ〉. A hypersequent H follows from the set of hypersequents H
(H |=S5 H) iff each model of H is a model of H as well. These notions are defined for the logics
with non-standard modalities in a similar way.

Consider Restall’s [168] hypersequent calculus HSS5 for S5.9 It has the following axiom: (Ax)
A⇒ A. Its structural rules are presented below:

(EW⇒)
H

A⇒ | H
(⇒EW)

H

⇒ A | H
(IC⇒)

A,A,Γ⇒ ∆ | H
A,Γ⇒ ∆ | H

(⇒IC)
Γ⇒ ∆, A,A | H

Γ⇒ ∆, A | H

(Cut)
Γ⇒ ∆, A | H A,Θ⇒ Λ | G

Γ,Θ⇒ ∆,Λ | H | G
(Merge)

Γ⇒ ∆ | Θ⇒ Λ | H
Γ,Θ⇒ ∆,Λ | H

In contrast to Restall, we will use a more general version of external weakening, which allows us
to add not only a sequent of the form A ⇒ or ⇒ A, but any hypersequent (including empty). The
latter issue is important for a constructive cut elimination proof.

(EW)
G

G | H

One can add internal weakening and external contraction rules:

(IW⇒)
Γ⇒ ∆ | H
A,Γ⇒ ∆ | H

(⇒IW)
Γ⇒ ∆ | H

Γ⇒ ∆, A | H
(EC)

Γ⇒ ∆ | Γ⇒ ∆ | H
Γ⇒ ∆ | H

However, it is not necessary to postulate them as primitive rules:

Γ⇒ ∆ | H
(EW⇒)

⇒ A | Γ⇒ ∆ | H
(Merge)

A,Γ⇒ ∆ | H

Γ⇒ ∆ | H
(⇒EW)

Γ⇒ ∆ | ⇒ A | H
(Merge)

Γ⇒ ∆, A | H

Γ⇒ ∆ | Γ⇒ ∆ | H
(Merge)

Γ,Γ⇒ ∆,∆ | H
(IC⇒), (⇒IC)

Γ⇒ ∆ | H

The rules for truth-value connectives are as follows:

(¬ ⇒)
Γ⇒ ∆, A | H
¬A,Γ⇒ ∆ | H

(⇒ ¬)
A,Γ⇒ ∆ | H

Γ⇒ ∆,¬A | H

(∧ ⇒)
A,B,Γ⇒ ∆ | H
A ∧B,Γ⇒ ∆ | H

(⇒ ∧)
Γ⇒ ∆, A | H Γ⇒ ∆, B | G

Γ⇒ ∆, A ∧B | H | G

(∨ ⇒)
A,Γ⇒ ∆ | H B,Γ⇒ ∆ | G

A ∨B,Γ⇒ ∆ | H | G
(⇒ ∨)

Γ⇒ ∆, A,B | H
Γ⇒ ∆, A ∨B | H

(→⇒)
Γ⇒ ∆, A | H B,Θ⇒ Λ | G
A→ B,Γ,Θ⇒ ∆,Λ | H | G

(⇒→)
A,Γ⇒ ∆, B | H

Γ⇒ ∆, A→ B | H
9In what follows, we denote via HSL a hypersequent calculus for a logic L. Similar notation will be used for other

types of calculi: A stands for an axiomatic (Hilbert-style) calculus, SC stands for an ordinary sequent calculus, NS
stands for a nested sequent calculus, and ND stands for a natural deduction system.
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(↔⇒)
B,Γ⇒ ∆, A | H A,Θ⇒ Λ, B | G

Γ,Θ⇒ ∆,Λ, A↔ B | H | G
(⇒↔)

A,B,Γ⇒ ∆ | H Θ⇒ Λ, A,B | G
A↔ B,Γ,Θ⇒ ∆,Λ | H | G

The rules for necessity and possibility operators are as follows:10

(�⇒)
A,Γ⇒ ∆ | H

�A⇒ | Γ⇒ ∆ | H
(⇒ �)

⇒ A | H
⇒ �A | H

(♦⇒)
A⇒ | H
♦A⇒ | H

(⇒ ♦)
Γ⇒ ∆, A | H

Γ⇒ ∆ | ⇒ ♦A | H

Let us formulate the rules for the non-standard modalities (all these rules are new except (∼ ⇒)
and (⇒ ∼) which were introduced in [9]11).

(B⇒)
A,Γ⇒ ∆ | H Θ⇒ Λ, A | G
BA⇒ | Γ⇒ ∆ | Θ⇒ Λ | H | G

(⇒ B)
⇒ A | A⇒ | H
⇒ BA | H

(I⇒)
⇒ A | A⇒ | H
IA⇒ | H

(⇒ I)
A,Γ⇒ ∆ | H Θ⇒ Λ, A | G
⇒ IA | Γ⇒ ∆ | Θ⇒ Λ | H | G

(◦ ⇒)
A,Γ⇒ ∆ | H Θ⇒ Λ, A | G
◦A,Θ⇒ Λ | Γ⇒ ∆ | H | G

(⇒ ◦)
⇒ A | A,Γ⇒ ∆ | H

Γ⇒ ∆, ◦A | H

(• ⇒)
⇒ A | A,Γ⇒ ∆ | H
•A,Γ⇒ ∆ | H

(⇒ •)
A,Γ⇒ ∆ | H Θ⇒ Λ, A | G

Θ⇒ Λ, •A | Γ⇒ ∆ | H | G

(◦̃ ⇒)
A,Γ⇒ ∆ | H Θ⇒ Λ, A | G
◦̃A,Γ⇒ ∆ | Θ⇒ Λ | H | G

(⇒ ◦̃)
Γ⇒ ∆, A | A⇒ | H

Γ⇒ ∆, ◦̃A | H

(•̃ ⇒)
Γ⇒ ∆, A | A⇒ | H
•̃A,Γ⇒ ∆ | H

(⇒ •̃)
A,Γ⇒ ∆ | H Θ⇒ Λ, A | G

Γ⇒ ∆, •̃A | Θ⇒ Λ | H | G

(∼ ⇒)
⇒ A | H
∼A⇒ | H

(⇒ ∼)
A,Γ⇒ ∆ | H

Γ⇒ ∆ | ⇒ ∼A | H

(∼̇ ⇒)
Γ⇒ ∆, A | H

∼̇A⇒ | Γ⇒ ∆ | H
(⇒ ∼̇)

A⇒ | H
⇒ ∼̇A | H

Let♣ ∈ {B,I, ◦, •, ◦̃, •̃,∼, ∼̇}. A hypersequent calculusHSS5♣ for the logic S5♣ is obtained from
Restall’s one for S5 by the replacement of the rules for � and ♦ with the ones for ♣. Hypersequent
calculi HSZ and HSŻ, respectively, for logics Z and Ż are ¬-free versions of HSS5∼ and HSS5∼̇.

Definition 4 (Proof). By a proof in HSL, where L is one of the logics in question, we mean a tree
which nodes are hypersequents such that leaves are axioms and other nodes are obtained from the
upper ones by applications of the rules of the calculus.

We write HSL ` H iff there is a proof of a hypersequent H in the hypersequent calculus for the
logic L. Similarly, H `HSL H means that there is a proof of a hypersequent H from a finite set of
hypersequents H in HSL. If in this proof each cut is on a formula A ∈ Γ ∪∆ for some component
Γ⇒ ∆ of some hypersequent in H , then we write H `cf

HSL H. Four examples of proofs in HSS5B

are presented in Figure 2.1 (the formulas are taken from Zolin’s [200] Hilbert-style axiomatization of
S5B).

10Restall’s original formulation of his calculus [168] does not have the rules for ∨, →, ↔, and ♦. These connectives
(except ↔ which we add here) were added to his calculus in [71].

11Avron and Lahav’s [9] original version of a hypersequent for Z is a bit different from the one that we present here.
They understand hypersequents as finite sets of sequents which are themselves understood as pairs of finite sets of
formulas. They use internal weakening rules, but do not use (Merge) and (IC).
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p⇒ p
(⇒ ¬)⇒ p,¬p

p⇒ p
(¬ ⇒)¬p, p⇒
(B⇒)

Bp⇒ | ⇒ ¬p | ¬p⇒
(⇒ B)

Bp⇒ | ⇒ B¬p
(Merge)Bp⇒ B¬p

(⇒→)⇒ Bp→ B¬p

p⇒ p
(¬ ⇒)¬p, p⇒

p⇒ p
(⇒ ¬)⇒ p,¬p
(B⇒)

B¬p⇒ | p⇒ | ⇒ p
(⇒ B)

B¬p⇒ | ⇒ Bp
(Merge)B¬p⇒ Bp

(⇒→)⇒ B¬p→ Bp

p⇒ p p⇒ p
(B⇒)

Bp⇒ | ⇒ p | p⇒
(⇒ B)

Bp⇒ | ⇒ Bp
(⇒ B)⇒ BBp

p⇒ p q ⇒ q
(→⇒)p, p→ q ⇒ q p⇒ p

(B⇒)
Bp⇒ | p→ q ⇒ q | p⇒

q ⇒ q (IW⇒)2xp, p, q ⇒ q (⇒→)p, q ⇒ p→ q p⇒ p
(B⇒)

Bp⇒ | q ⇒ p→ q | p⇒
(B⇒)

B(p→ q)⇒ | Bp⇒ | p⇒ | q ⇒ | ⇒ q
(⇒ B)

B(p→ q)⇒ | Bp⇒ | p⇒ | ⇒ Bq
(Merge)3x

p,B(p→ q),Bp⇒ Bq
(⇒→)3x

⇒ p→
(
B(p→ q)→ (Bp→ Bq)

)
Figure 2.1: Examples of proofs in HSS5B.

2.3.1 Soundness and completeness

Theorem 5 (Strong soundness). Let ♣ ∈ {B,I, ◦, •, ◦̃, •̃,∼, ∼̇} and L ∈ {S5♣,Z, Ż}. For each
finite set of hypersequents H ∪ {H}, if H `HSL H, then H |=L H.

Proof. Consider the rule (⇒ ◦). Suppose that⇒ A | A,Γ⇒ ∆ | H is valid in an arbitrary S5◦-model
〈W,ϑ〉. Then at least one of the components of this hypersequent is valid in 〈W,ϑ〉. If ⇒ A is valid
in 〈W,ϑ〉, then ϑ(A,w) = 1 for all w ∈ W . Then ⇒ ◦A is valid in 〈W,ϑ〉, and hence Γ⇒ ∆, ◦A | H
is valid in this model as well. If A,Γ ⇒ ∆ is valid in 〈W,ϑ〉, then ϑ(A,w) = 0 for some w ∈ W or
Γ⇒ ∆ is valid in 〈W,ϑ〉. Hence, Γ⇒ ∆, ◦A | H is valid in 〈W,ϑ〉. Obviously, if a component of H
is valid in 〈W,ϑ〉, then Γ⇒ ∆, ◦A | H is valid in it as well.

Consider the rule (◦ ⇒). Suppose that A,Γ ⇒ ∆ | H and Θ ⇒ Λ, A | G are valid in S5◦-model
〈W,ϑ〉. If H or G is valid in it, then ◦A,Θ ⇒ Λ | Γ ⇒ ∆ | H | G is valid as well. Suppose that
A,Γ ⇒ ∆ is valid in 〈W,ϑ〉. Then ϑ(A, x) = 0 for some x ∈ W or Γ ⇒ ∆ is valid in 〈W,ϑ〉. In
the latter case, ◦A,Θ ⇒ Λ | Γ ⇒ ∆ | H | G is valid as well. Let us consider the former one. So
suppose that there is x ∈ W such that ϑ(A, x) = 0. Now assume that Θ ⇒ Λ, A is valid in 〈W,ϑ〉.
Hence, Θ ⇒ Λ is valid in 〈W,ϑ〉 or ϑ(A, y) = 1 for some y ∈ W . The former disjunct implies
the validity of ◦A,Θ ⇒ Λ | Γ ⇒ ∆ | H | G. Let us consider the second disjunct. Let y ∈ W
be such that ϑ(A, y) = 1. Since there is x ∈ W such that ϑ(A, x) = 0, ϑ(◦A, y) = 0. Therefore,
◦A,Θ⇒ Λ | Γ⇒ ∆ | H | G is valid in 〈W,ϑ〉.

The other cases are considered similarly.

Theorem 6 (Strong completeness). Let ♣ ∈ {B,I, ◦, •, ◦̃, •̃,∼, ∼̇} and L ∈ {S5♣,Z, Ż}. For each
finite set of hypersequents H ∪ {H}, if H |=L H, then H `cf

HSL H.

Proof. We adapt Avron and Lahav’s [9] completeness proof for Z. Suppose that H 6`cf
HSL H. We

construct a model of H which is not a model of H. Let F be the set of subformulas of formulas in
H ∪ {H}. We call a hypersequent G an F-hypersequent iff it satisfies the following conditions:
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• if A ∈ G, then A ∈ F, for each formula A;

• H 6`cf
HSL G;

• if Γ ∪∆ ⊆ F, then either Γ⇒ ∆ ∈ G or H `cf
HSL G | Γ⇒ ∆.

Since H is finite, F is finite as well. Let S1, . . . , Sn be an enumeration of all the sequents Γ⇒ ∆
such that Γ ∪∆ ⊆ F. We put, for each 1 6 i 6 n:

H0 = H,

Hi =

{
Hi−1 | Si, if H 6`cf

HSL Hi−1 | Si,
Hi−1 otherwise,

H∗ = Hn.

Then H∗ is an F-hypersequent such that H ⊆ H∗. A component Γ∗ ⇒ ∆∗ of H∗ is said to be
maximal iff it has no proper extension in H∗ (i.e., if Γ∗∗ ⇒ ∆∗∗ ∈ H∗, Γ∗ ⊆ Γ∗∗, and ∆∗ ⊆ ∆∗∗, then
Γ∗ = Γ∗∗ and ∆∗ = ∆∗∗). Let W be the set of all maximal components of H∗. We write Γw and
∆w (where w ∈ W ), respectively, for Γ∗ and ∆∗ iff w = Γ∗ ⇒ ∆∗. Let ϑ be the valuation such that
ϑ(p, w) = 1 iff p ∈ Γw, for each p ∈ P .

We need to prove that for each A ∈ F and each maximal component w of H∗ it holds that:

(a) A ∈ Γw implies ϑ(A,w) = 1,

(b) A ∈ ∆w implies ϑ(A,w) = 0.

The proof is by induction on the complexity of A. The basic case (i.e., A ∈ P) follows from
the definition of ϑ. The proof for ∧ and ∼ one may find in [9]. Other propositional connectives are
considered similarly.

Let A be BB. Suppose that A ∈ Γw. Assume that there is y ∈ W such that B 6∈ Γy and there is a
z ∈ W such that B 6∈ ∆z. Since y and z are maximal, B,Γy ⇒ ∆y 6∈ H∗ and Γz ⇒ ∆z, B 6∈ H∗. Since
H∗ is an F-hypersequent, H `cf

HSL H∗ | B,Γy ⇒ ∆y and H `cf
HSL H∗ | Γz ⇒ ∆z, B. By the rule

(B ⇒), H `cf
HSL H

∗ | BB ⇒ | Γy ⇒ ∆y | Γz ⇒ ∆z, i.e., H `cf
HSL H

∗ | A ⇒ | Γy ⇒ ∆y | Γz ⇒ ∆z.
Then H `cf

HSL H∗ | A ⇒ | y | z. By the rule (Merge), H `cf
HSL H∗ | A ⇒. Since A ∈ Γw, by

(Merge) and (IC), we get H `cf
HSL H

∗. Contradiction. Hence, for each x ∈ W , B ∈ Γx, or for each
x ∈ W , B ∈ ∆x. By the induction hypothesis for B, for each x ∈ W , ϑ(B, x) = 1 or for each x ∈ W ,
ϑ(B, x) = 0. Thus, ϑ(A,w) = 1.

Suppose that A ∈ ∆w. Assume that B ⇒ 6∈ H∗. Then H `cf
HSL H∗ | B ⇒, since H∗ is an

F-sequence. By (EW), H `cf
HSL H∗ | ⇒ B | B ⇒. By (⇒ B), H `cf

HSL H∗ | ⇒ BB, i.e.,
H `cf

HSL H∗ | ⇒ A. Since A ∈ ∆w, by (Merge) and (IC), H `cf
HSL H∗. Contradiction. Hence,

B ⇒ ∈ H∗. Therefore, there is a y ∈ W such that B ∈ Γy. By the induction hypothesis for B, there
is a y ∈ W such that ϑ(B, y) = 1. Assume that ⇒ B /∈ H∗. Then H `cf

HSL H∗ | ⇒ B, since H∗
is an F-sequence. By (EW), H `cf

HSL H
∗ | ⇒ B | B ⇒, and by (⇒ B), H `cf

HSL H
∗ | ⇒ A which

implies H `cf
HSL H

∗. Contradiction. Hence, ⇒ B ∈ H∗. Thus, there is a z ∈ W such that B ∈ ∆z.
By the induction hypothesis for B, there is a z ∈ W such that ϑ(B, z) = 0. Therefore, ϑ(A,w) = 0.

Let A be IB. Suppose that A ∈ Γw. We show that there is an x ∈ W such that B ∈ ∆x and
there is an x ∈ W such that B ∈ Γx. Assume that ⇒ B /∈ H∗. Then H `cf

HSL H∗ | ⇒ B, since
H∗ is an F-sequence. By (EW), H `cf

HSL H
∗ | ⇒ B | B ⇒ and by (I ⇒), H `cf

HSL H
∗ | IB ⇒,

i.e., H `cf
HSL H

∗ | A⇒ which gives us due to the fact that A ∈ Γw and the rules (Merge) and (IC)
that H `cf

HSL H∗. Contradiction. Thus, ⇒ B ∈ H∗. Hence, there is a maximal component x of
H∗ that extends it, i.e., B ∈ ∆x. Therefore, the induction hypothesis for B implies that there is an
x ∈ W such that ϑ(B, x) = 0. Assume that B ⇒ /∈ H∗. Then H `cf

HSL H∗ | B ⇒, and so that
H `cf

HSL H∗ | ⇒ B | B ⇒ which implies H `cf
HSL H∗. Contradiction. Thus, B ⇒ ∈ H∗. Hence,
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there is a maximal component x of H∗ such that B ∈ Γx. Therefore, the induction hypothesis for B
implies that there is an x ∈ W such that ϑ(B, x) = 1. Thus, ϑ(A, x) = 1.

Suppose that A ∈ ∆w. We show that for each x ∈ W , B ∈ Γx, or for each x ∈ W , B ∈ ∆x.
Assume the converse, i.e., that there is a y ∈ W such that B 6∈ Γy and there is a z ∈ W such
that B /∈ ∆z. Then H `cf

HSL H∗ | B,Γy ⇒ ∆y and H `cf
HSL H∗ | Γz ⇒ ∆z, B. By (⇒ I),

H `cf
HSL H∗ | ⇒ A | Γy ⇒ ∆y | Γz ⇒ ∆z. Then H `cf

HSL H∗ | ⇒ A | y | z which implies
H `cf

HSL H∗ | ⇒ A. Since A ∈ ∆w, by (Merge) and (IC), H `cf
HSL H∗. Contradiction. By the

induction hypothesis for B, for each x ∈ W , ϑ(B, x) = 1 or for each x ∈ W , ϑ(B, x) = 0. Hence,
ϑ(A,w) = 0.

Let A be ◦B. Suppose that A ∈ Γw. Suppose that {B} ∪∆w = ∅ and for some maximal x ∈ W ,
B 6∈ Γx. Then by the maximality of w and x as well as the fact that H∗ is an F-hypersequent,
H `cf

HSL H∗ | Γw ⇒ ∆w, B and H `cf
HSL H∗ | B,Γx ⇒ ∆x. By the rule (◦ ⇒), H `cf

HSL H∗ |
◦B,Γw ⇒ ∆w, | Γx ⇒ ∆x. Then H `cf

HSL H∗ | w | x. By (Merge) and (IC), H `cf
HSL H∗.

Contradiction. Thus, B ∈ ∆w or for each x ∈ W , B ∈ Γx. It follows by the induction hypothesis for
B that ϑ(B,w) = 0 or for each maximal x ∈ W , ϑ(B, x) = 1. Hence, ϑ(A,w) = 1.

Suppose that A ∈ ∆w. Assume that B 6∈ Γw or ⇒ B 6∈ H∗. Suppose that B 6∈ Γw. Then since w
is maximal, B,Γw ⇒ ∆w 6∈ H∗. Since B 6∈ Γw and H∗ is an F-hypersequent, H `cf

HSL H
∗ | B,Γw ⇒

∆w. By (EW), H `cf
HSL H

∗ | ⇒ B | B,Γw ⇒ ∆w. By the rule (⇒ ◦), H `cf
HSL H

∗ | Γw ⇒ ∆w, ◦B.
Since A ∈ ∆w, H `cf

HSL H∗ | w. Using (Merge) and (IC), we have H `cf
HSL H∗. Contradiction.

Suppose that ⇒ B 6∈ H∗. Since H∗ is an F-hypersequent, H `cf
HSL H

∗ | ⇒ B. By (EW), H `cf
HSL

H∗ | ⇒ B | B,Γw ⇒ ∆w. Using (⇒ ◦), (Merge) and (IC), we get H `cf
HSL H∗. Contradiction.

Hence, B ∈ Γw and ⇒ B ∈ H∗. Then by the induction hypothesis for B, ϑ(B,w) = 1 and for some
x ∈ W , ϑ(B, x) = 0. Hence, ϑ(A,w) = 0.

Let A be •B. Suppose that A ∈ Γw. Assume that B 6∈ Γw or ⇒ B 6∈ H∗. Suppose that B 6∈ Γw.
Then since w is maximal, B,Γw ⇒ ∆w 6∈ H∗. Since B 6∈ Γw and H∗ is an F-hypersequent,
H `cf

HSL H∗ | B,Γw ⇒ ∆w. By (EW), H `cf
HSL H∗ | ⇒ B | B,Γw ⇒ ∆w. By the rule (• ⇒),

H `cf
HSL H

∗ | •B,Γw ⇒ ∆w, i.e., H `cf
HSL H

∗ | A,Γw ⇒ ∆w. Since A ∈ Γw, H `cf
HSL H

∗ | w. Using
(Merge) and (IC), we have H `cf

HSL H
∗. Contradiction. Suppose that ⇒ B 6∈ H∗. Since H∗ is an

F-hypersequent, H `cf
HSL H

∗ | ⇒ B. By (EW), H `cf
HSL H

∗ | ⇒ B | B,Γw ⇒ ∆w. Using (• ⇒),
(Merge), and (IC), we get H `cf

HSL H∗. Contradiction. Hence, B ∈ Γw and ⇒ B ∈ H∗. Then by
the induction hypothesis for B, ϑ(B,w) = 1 and for some x ∈ W ϑ(B, x) = 0. Hence, ϑ(A,w) = 1.

Suppose that A ∈ ∆w. Suppose that {B}∪∆w = ∅ and for some maximal x ∈ W , B 6∈ Γx. Then
by the maximality of w and x as well as the fact that H∗ is an F-hypersequent, H `cf

HSL H
∗ | Γw ⇒

∆w, B and H `cf
HSL H

∗ | B,Γx ⇒ ∆x. By the rule (⇒ •), H `cf
HSL H

∗ | Γw ⇒ ∆w, •B | Γx ⇒ ∆x.
Then H `cf

HSL H
∗ | w | x. By (Merge) and (IC), H `cf

HSL H
∗. Contradiction. Thus, B ∈ ∆w or for

each maximal x ∈ W , B ∈ Γx. It follows by the induction hypothesis for B that ϑ(B,w) = 0 or for
each maximal x ∈ W , ϑ(B, x) = 1. Hence, ϑ(A,w) = 0.

Let A be ∼B. This case is considered in [9] by Avron and Lahav.
The other cases are similar to the previous ones.
Now we show that 〈W,ϑ〉 is a model for H , but not for H. Let H ′ ∈H . If its every component

is a subsequent of some component of H∗, then due to (EW) and (Merge) H∗ is derivable from H ′

and hence from H which contradicts to the fact that H 6`cf
HSL H∗. Hence, there is a component

Γ⇒ ∆ of H ′ which is not a subsequent of any component of H∗. Let us prove that Γ⇒ ∆ is valid in
〈W,ϑ〉. Let w ∈ W . Then either Γ * Γw or ∆ * ∆w. Suppose that Γ * Γw (the case of ∆ * ∆w is
similar). Then for some A ∈ Γ, A 6∈ Γw. Since A ∈ F, w is maximal, and H∗ is an F-hypersequent,
H `cf

HSL H∗ | A,Γw ⇒ ∆w. Assume that A 6∈ ∆w. Then H `cf
HSL H∗ | Γw ⇒ ∆w, A. By (Cut),

H `cf
HSL H

∗ | Γw ⇒ ∆w, i.e., H `cf
HSL H

∗ | w. Hence, H `cf
HSL H

∗. Contradiction. Then A ∈ ∆w

which implies, by proposition (b) and the maximality of w, that ϑ(A,w) = 0. Since A ∈ Γ, Γ ⇒ ∆
is true in a world w. Since w is an arbitrary world, Γ⇒ ∆ is valid in 〈W,ϑ〉 which implies that H
is valid in 〈W,ϑ〉 as well.
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Assume that Γ⇒ ∆ is some component of H. Since H ⊆ H∗, there is a maximal component w
of H∗ such that Γ ⊆ Γw and ∆ ⊆ ∆w. By propositions (a) and (b), we obtain that A ∈ Γ implies
ϑ(A,w) = 1 as well as A ∈ ∆ implies ϑ(A,w) = 0. Thus, Γ⇒ ∆ is not true in a world w. Hence, it
is not valid in a model 〈W,ϑ〉. Therefore, 〈W,ϑ〉 is not a model for H.

Corollary 7. Let ♣ ∈ {B,I, ◦, •, ◦̃, •̃,∼, ∼̇} and L ∈ {S5♣,Z, Ż}. For each finite set of hyperse-
quents H ∪ {H}, H `HSL H iff H |=L H.

Proof. Follows from Theorems 5 and 6.

Corollary 8. Let ♣ ∈ {B,I, ◦, •, ◦̃, •̃,∼, ∼̇}, L ∈ {S5♣,Z, Ż}, and H ∪ {H} be a finite set of
hypersequents. Then H `HSL H implies H `cf

HSL H.

Proof. Follows from Theorem 6. In the proof of this theorem, (Cut) is used only once to show that
〈W,ϑ〉 is a model for H and is applied only to formulas which belong to H .

Corollary 9 (Cut admissibility). Let ♣ ∈ {B,I, ◦, •, ◦̃, •̃,∼, ∼̇}, L ∈ {S5♣,Z, Ż}, and H be a
hypersequent. Then `HSL H implies that there is a cut-free proof of H in HSL.

Proof. Put H = ∅ in the proof of Theorem 6. Then the only application of (Cut) in the proof of
this Theorem disappears.

Corollary 10 (Subformula property). Let ♣ ∈ {B,I, ◦, •, ◦̃, •̃,∼, ∼̇}, L ∈ {S5♣,Z, Ż}. For every
hypersequent which is provable in HSL there is a proof such that each formula which occurs in it is
a subformula of the formulas which occur in the conclusion.

Proof. Follows from Corollary 9 and the fact that in any of the rules of HSL each formula which
occurs in the premises is a subformula of the formulas which occur in the conclusion.

Let us recall that strong soundness and completeness as well as cut admissibility theorems are
proven for Z by Avron and Lahav [9] (however, constructive cut admissibility was not proven).
Soundness, completeness, and cut admissibility for S5 in the language with � were shown by Restall
[168] by a Hintikka-style proof, although a bit different from the one which we consider here; he
proposed also a sketch of a constructive cut admissibility, a more detailed proof by Metcalfe, Olivetti,
and Gabbay’s method [123] can be found in Indrzejczak’s book [84]. As we know from Corollary 9,
in any of the hypersequent calculi in question if we have a proof of a hypersequent H, then we can
be sure that there exists a cut-free proof of the same hypersequent. However, the problem is how to
find such a cut-free proof. Constructive proof of the cut admissibility theorem will give us an answer.

2.3.2 Constructive proof of the cut admissibility theorem

We use the strategy originally introduced by Metcalfe, Olivetti, and Gabbay [123] for fuzzy logics
and further developed by Ciabattoni, Metcalfe, and Montagna [26]. It was adapted for modal logics
by Kurokawa [107], Indrzejczak [78, 79, 80, 81, 84], Lellmann [111], Kuznets and Lellmann [108].

Let us recall that a formula introduced by the application of a logical rule is said to be principal
formula, formulas used for the proof of the principal formula are said to be side formulas, all other
elements of the hypersequent are said to be parametric formulas. We say that a hypersequent which
contains the principal formula is an active hypersequent.

The length l(D) of a derivation D is (the maximal number of applications of inference rules) plus
1 occurring on any branch of D. The complexity c(A) of a formula A is the number of occurrences
of its connectives. The cut rank r(D) of a derivation D is the maximal complexity of cut formulas
in D plus 1. Thus, a cut-free derivation D has r(D) = 0.

We need to prove two lemmas.
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Lemma 11 (Right reduction). Let D1 and D2 be derivations such that :

(1) D1 is a derivation of Φ⇒ Ψ, A | H,

(2) D2 is a derivation of Ai1 ,Υ1 ⇒ Ω1 | . . . | Ain ,Υn ⇒ Ωn | G,

(3) r(D1) ≤ c(A) and r(D2) ≤ c(A),

(4) A is the principal formula of a logical rule in D1.

Then we can construct a derivation D0 of Φi1 ,Υ1 ⇒ Ω1,Ψ
i1 | . . . | Φin ,Υn ⇒ Ωn,Ψ

in | H | G such
that r(D0) ≤ c(A).

Proof. The proof is by induction on on l(D2). Basic case is easy and is omitted here.
Inductive case. We have different cases depending on the last rule applied to D2.
Case 1. The last rule is applied on only side sequents G. The case is obvious and is omitted.
Case 2. The last rule is any non-modal rule that does not have A as the principal formula.
Let us use the following abbreviations, for any 1 ≤ l ≤ n and 1 ≤ k ≤ n, where x, y ∈ {l, il, jl}:

• AΦΨ
l = Φl ⇒ Ψl,

• AΦΨ
il

= Φil ⇒ Ψil ,

• AΦΨ
l × AΥΩ

k = Φl,Υk ⇒ Ψl,Ωk.

• AΦΨ
il
× AΥΩ

k = Φil ,Υk ⇒ Ψil ,Ωk.

Subcase 2.1. The rule of the last inference of D2 is (Merge).

Ai1 ,Γ1 ⇒ ∆1 | Ai2 ,Γ2 ⇒ ∆2 | Ai3 ,AΓ∆
3 | . . . | Ain ,AΓ∆

n | H
Ai1+i2 ,Γ1,Γ2 ⇒ ∆1,∆2 | Ai3 ,AΓ∆

3 | . . . | Ain ,AΓ∆
n | H

D1 ends with the hypersequent Θ⇒ Λ, A | G. What we need to obtain is

Γ1,Γ2,Θ
i1+i2 ⇒ ∆1,∆2,Λ

i1+i2 | AΓ∆
3 × AΘΛ

i3
| . . . | AΓ∆

n × AΘΛ
in | H | G

Using the induction hypothesis and (Merge), we get the required result as follows:

Γ1,Θ
i1 ⇒ ∆1,Λ

i1 | Γ2,Θ
i2 ⇒ ∆2,Λ

i2 | AΓ∆
3 × AΘΛ

i3
| . . . | AΓ∆

n × AΘΛ
in | H | G

Γ1,Γ2,Θ
i1+i2 ⇒ ∆1,∆2,Λ

i1+i2 | AΓ∆
3 × AΘΛ

i3
| . . . | AΓ∆

n × AΘΛ
in | H | G

The other cases are considered similarly.
Case 3. The last inference is an application of the non-modal left introduction rule whose principal

formula is A. This case is rather easy and is omitted here, since it deals with classical propositional
logic for which cut admissibility is well-known (some propositional cases can be found in [84]).

Case 4. The rule of the last inference of D2 is (B⇒).
Subcase 4.1. A is principal in D2 and A = BB. The last inference of D2 looks as follows.

B,BBi1 ,AΘΛ
1 | . . . | BBin ,AΘΛ

n | G1 BBi1 ,AΠΣ
1 , B | . . . | BBin ,AΠΣ

n | G2

BB ⇒ | BBi1 ,AΘΛ
1 | . . . | BBin ,AΘΛ

n | BBi1 ,AΠΣ
1 | . . . | BBin ,AΠΣ

n | G1 | G2

Since D1 ends as the condition (4) states, the last inference of D1 is as follows.

⇒ B | B ⇒ | H
⇒ BB | H

What we need to obtain is

⇒ | AΘΛ
1 | . . . | AΘΛ

n | AΠΣ
1 | . . . | AΠΣ

n | H | G1 | G2
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By the induction hypothesis, we obtain derivations D3 and D4, respectively, of the following
hypersequents such that r(D3) ≤ c(A) and r(D4) ≤ c(A):

B,AΘΛ
1 | AΘΛ

2 | . . . | AΘΛ
n | H | G1.

AΠΣ
1 , B | AΠΣ

2 | . . . | AΠΣ
n | H | G2.

Using these hypersequents and ⇒ B | B ⇒ | H, by (Cut), (Merge) with (IC) (or just (EC)) as
well as (EW), we get

AΠΣ
1 , B | . . . | AΠΣ

n | H | G2

⇒ B | B ⇒ | H B,AΘΛ
1 | . . . | AΘΛ

n | H | G1

B ⇒ | AΘΛ
1 | . . . | AΘΛ

n | H | H | G1

AΘΛ
1 | . . . | AΘΛ

n | AΠΣ
1 | . . . | AΠΣ

n | H | H | H | G1 | G2

AΘΛ
1 | . . . | AΘΛ

n | AΠΣ
1 | . . . | AΠΣ

n | H | G1 | G2

⇒ | AΘΛ
1 | . . . | AΘΛ

n | AΠΣ
1 | . . . | AΠΣ

n | H | G1 | G2

Subcase 4.2. The rule of the last inference of D2 is (B⇒) and the principal formula in D2 is not
A. Then the last inference of D2 looks as follows.

B,Ai1 ,AΘΛ
1 | . . . | Ain ,AΘΛ

n | G1 Ai1 ,AΠΣ
1 , B | . . . | Ain ,AΠΣ

n | G2

BB ⇒ | Ai1 ,AΘΛ
1 | . . . | Ain ,AΘΛ

n | Ai1 ,AΠΣ
1 | . . . | Ain ,AΠΣ

n | G1 | G2

D1 ends with the hypersequent Γ⇒ ∆, A | H. We should obtain

BB ⇒ | AΓ∆
i1
× AΘΛ

1 | . . . | AΓ∆
in × AΘΛ

n | AΓ∆
i1
× AΠΣ

1 | . . . | AΓ∆
in × AΠΣ

n | H | G1 | G2

By the induction hypothesis, we obtain derivations D3 and D4, respectively, of the following
hypersequents such that r(D3) ≤ c(A) and r(D4) ≤ c(A):

B,AΓ∆
i1
× AΘΛ

1 | AΓ∆
i2
× AΘΛ

2 | . . . | AΓ∆
in × AΘΛ

n | H | G1.

AΓ∆
i1
× AΠΣ

1 , B | AΓ∆
i2
× AΠΣ

2 | . . . | AΓ∆
in × AΠΣ

n | H | G2.

Applying (B⇒) and structural rules, we get the required result.
In what follows, we omit the cases where A is not the principal formula in D2, since they are

similar to the Subcase 4.2.
Case 5. The rule of the last inference of D2 is (I⇒). Hence, A = IB and A is principal in D2.

D2 ends as follows:

⇒ B | B ⇒ | IBi1 ,Π1 ⇒ Σ1 | . . . | IBin ,Πn ⇒ Σn | G
IB ⇒ | IBi1 ,Π1 ⇒ Σ1 | . . . | IBin ,Πn ⇒ Σn | G

D1 ends as follows:

B,Γ⇒ ∆ | H1 Θ⇒ Λ, B | H2

⇒ IB | Γ⇒ ∆ | Θ⇒ Λ | H1 | H2

We should obtain

⇒ | Π1 ⇒ Σ1 | . . . | Πn ⇒ Σn | Γ⇒ ∆ | Θ⇒ Λ | H1 | H2 | G

By the induction hypothesis, we have

⇒ B | B ⇒ | Π1 ⇒ Σ1 | . . . | Πn ⇒ Σn | Γ⇒ ∆ | Θ⇒ Λ | H1 | H2 | G

Using the induction hypothesis, applying (Cut) on the formulas of lower complexity, and using
other structural rules, we obtain the required result as follows:
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Θ⇒ Λ, B | H2

⇒ B | B ⇒ | Π1 ⇒ Σ1 | . . . | Πn ⇒ Σn | Γ⇒ ∆ | Θ⇒ Λ | H1 | H2 | G B,Γ⇒ ∆ | H1

Γ⇒ ∆ | B ⇒ | Π1 ⇒ Σ1 | . . . | Πn ⇒ Σn | Γ⇒ ∆ | Θ⇒ Λ | H1 | H1 | H2 | G
Γ⇒ ∆ | Θ⇒ Λ | Π1 ⇒ Σ1 | . . . | Πn ⇒ Σn | Γ⇒ ∆ | Θ⇒ Λ | H1 | H1 | H2 | H2 | G

Π1 ⇒ Σ1 | . . . | Πn ⇒ Σn | Γ⇒ ∆ | Θ⇒ Λ | H1 | H2 | G
⇒ | Π1 ⇒ Σ1 | . . . | Πn ⇒ Σn | Γ⇒ ∆ | Θ⇒ Λ | H1 | H2 | G

Case 6. The rule of the last inference of D2 is (∼ ⇒). Hence, A = ∼B and A is principal in D2.
D2 ends as follows:

⇒ B | ∼Bi1 ,Π1 ⇒ Σ1 | . . . | ∼Bin ,Πn ⇒ Σn | G
∼B ⇒ | ∼Bi1 ,Π1 ⇒ Σ1 | . . . | ∼Bin ,Πn ⇒ Σn | G

D1 ends as follows:
B,Γ⇒ ∆ | H

Γ⇒ ∆ | ⇒ ∼B | H
We should obtain

Γ⇒ ∆ | ⇒ | Π1 ⇒ Σ1 | . . . | Πn ⇒ Σn | H | G
Using the induction hypothesis, applying (Cut) on the formulas of lower complexity, and using

other structural rules, we obtain the required result as follows:

Γ⇒ ∆ | ⇒ B | Π1 ⇒ Σ1 | . . . | Πn ⇒ Σn | H | G B,Γ⇒ ∆ | H
Γ⇒ ∆ | ⇒ | Π1 ⇒ Σ1 | . . . | Πn ⇒ Σn | H | G

Case 7. The rule of the last inference of D2 is (∼̇ ⇒). A is principal in D2 and A = ∼̇B. The
last step of D2 is as follows.

∼̇Bi1 ,AΘΛ
1 , B | ∼̇Bi2 ,AΘΛ

2 | . . . | ∼̇Bin ,AΘΛ
n | G

∼̇B ⇒ | ∼̇Bi1 ,AΘΛ
1 | . . . | ∼̇Bin ,AΘΛ

n | G

The last step of D1 is as follows:

B ⇒ | H
⇒ ∼̇B | H

We should obtain
⇒ | AΘΛ

1 | . . . | AΘΛ
n | H | G

Using the induction hypothesis, applying (Cut) on the formulas of lower complexity, and using
other structural rules, we obtain the required result as follows:

AΘΛ
1 , B | AΘΛ

2 | . . . | AΘΛ
n | H | G B ⇒ | H

AΘΛ
1 | . . . | AΘΛ

n | H | H | G
AΘΛ

1 | . . . | AΘΛ
n | H | G

⇒ | AΘΛ
1 | . . . | AΘΛ

n | H | G
Case 8. The rule of the last inference of D2 is (◦ ⇒). A is principal in D2 and A = ◦B. The last

inference of D2 looks as follows.

B, ◦Bi1 ,AΘΛ
1 | . . . | ◦Bin ,AΘΛ

n | G1 ◦Bi1 ,AΠΣ
1 , B | . . . | ◦Bin ,AΠΣ

n | G2

◦Bi1+1,AΠΣ
1 | ◦Bi1 ,AΘΛ

1 | . . . | ◦Bin ,AΘΛ
n | ◦Bi2 ,AΠΣ

2 | . . . | ◦Bin ,AΠΣ
n | G1 | G2

Since D1 ends as the condition (4) states, the last inference of D1 is as follows.

⇒ B | B,Γ⇒ ∆ | H
Γ⇒ ∆, ◦B | H

We should obtain
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AΓ∆
i1+1 × AΠΣ

1 | AΓ∆
i1
× AΘΛ

1 | . . . | AΓ∆
in × AΘΛ

n | AΓ∆
i2
× AΠΣ

2 | . . . | AΓ∆
in × AΠΣ

n | H | G1 | G2

By the induction hypothesis, we obtain derivations D3 and D4, respectively, of the following
hypersequents such that r(D3) ≤ c(A) and r(D4) ≤ c(A):

B,AΓ∆
i1
× AΘΛ

1 | AΓ∆
i2
× AΘΛ

2 | . . . | AΓ∆
in × AΘΛ

n | H | G1

AΓ∆
i1
× AΠΣ

1 , B | AΓ∆
i2
× AΠΣ

2 | . . . | AΓ∆
in × AΠΣ

n | H | G2

Let us abbreviate them as follows:

B,AΓ∆
i1
× AΘΛ

1 | A1 | H

AΓ∆
i1
× AΠΣ

1 , B | A2 | H

Then we reason as follows, using (Cut) and (EC):

AΓ∆
i1
× AΠΣ

1 , B | A2 | H
⇒ B | B,Γ⇒ ∆ | H B,AΓ∆

i1
× AΘΛ

1 | A1 | H
B,Γ⇒ ∆ | AΓ∆

i1
× AΘΛ

1 | A1 | H | H
AΓ∆

i1+1 × AΠΣ
1 | AΓ∆

i1
× AΘΛ

1 | A1 | A2 | H | H | H
AΓ∆

i1+1 × AΠΣ
1 | AΓ∆

i1
× AΘΛ

1 | A1 | A2 | H

The cases dealing with •, ◦̃, and •̃ are considered similarly.

Lemma 12 (Left reduction). Let D1 and D2 be derivations such that :

(1) D1 is a derivation of Φ1 ⇒ Ψ1, A
i1 | . . . | Φn ⇒ Ψn, A

in | H,

(2) D2 is a derivation of A,Υ⇒ Ω | G,
(3) r(D1) ≤ c(A) and r(D2) ≤ c(A).

Then we can construct a derivation D0 of Φ1,Υ
i1 ⇒ Ωi1 ,Ψ1 | . . . | Φn,Υ

in ⇒ Ωin ,Ψn | H | G such
that r(D0) ≤ c(A).

Proof. The proof is by induction on l(D1). The basic case is easy and left for the reader.
Inductive case. We have different cases depending on the last rule applied to D1. The first three

cases are similar to Lemma 11.
Case 4. The rule of the last inference of D1 is (B⇒). In this case, A is not the principal formula.

The last inference of D1 is as follows.

B,AΘΛ
1 , Ai1 | . . . | AΘΛ

n , Ain | G1 AΠΣ
1 , Ai1 , B | . . . | AΠΣ

n , Ain | G2

BB ⇒ | AΘΛ
1 , Ai1 | . . . | AΘΛ

n , Ain | AΠΣ
1 , Ai1 | . . . | AΠΣ

n , Ain | G1 | G2

D2 ends with the hypersequent A,Γ⇒ ∆ | H. We should obtain:

BB ⇒ | AΓ∆
i1
× AΘΛ

1 | . . . | AΓ∆
in × AΘΛ

n | AΓ∆
i1
× AΠΣ

1 | . . . | AΓ∆
in × AΠΣ

n | H | G1 | G2

By the induction hypothesis, we obtain derivations D3 and D4, respectively, of the following
hypersequents such that r(D3) ≤ c(A) and r(D4) ≤ c(A):

B,AΓ∆
i1
× AΘΛ

1 | AΓ∆
i2
× AΘΛ

2 | . . . | AΓ∆
in × AΘΛ

n | H | G1.

AΓ∆
i1
× AΘΛ

1 , B | AΓ∆
i2
× AΘΛ

2 | . . . | AΓ∆
in × AΘΛ

n | H | G2.

Applying (B⇒), we get the required result.
Case 5. The rule of the last inference of D1 is (⇒ B). Subcase 5.1. A = BB and is the principal

formula. D1 ends as follows:
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B ⇒|⇒ B | Π1 ⇒ Σ1,BBi1 | . . . | Πn ⇒ Σn,BBin | H
⇒ BB | Π1 ⇒ Σ1,BBi1 | . . . | Πn ⇒ Σn,BBin | H

D2 ends as follows: BB,Γ⇒ ∆ | G.
By Lemma 11, the claim holds since this case satisfies the condition of application of the Lemma.
Subcase 5.2. A is not the principal formula. The last inference of D1 is as follows.

B ⇒ | ⇒ B | Π1 ⇒ Σ1, A
i1 | . . . | Πn ⇒ Σn, A

in | G
⇒ BB | Π1 ⇒ Σ1, A

i1 | . . . | Πn ⇒ Σn, A
in | G

D2 ends with the hypersequent A,Γ⇒ ∆ | H. We should obtain:

⇒ BB | AΓ∆
i1
× AΠΣ

1 | . . . | AΓ∆
in × AΠΣ

n | H | G

By the induction hypothesis and (⇒ B), we get the required result similarly to Case 4 of this
Lemma.

Case 6. The rule of the last inference of D1 is (I ⇒). In this case A is not principal and is
contained in a side hypersequent G. The case is similar to the Case 1 of Lemma 11.

Case 7. The rule of the last inference of D1 is (⇒ I).
Subcase 7.1. A is the principal formula. The last inference of D1 is as follows.

B,AΘΛ
1 ,IBi1 | . . . | AΘΛ

n ,IBin | G1 AΠΣ
1 ,IBi1 , B | . . . | AΠΣ

n ,IBin | G2

⇒ IB | AΘΛ
1 ,IBi1 | . . . | AΘΛ

n ,IBin | AΠΣ
1 ,IBi1 | . . . | AΠΣ

n ,IBin | G1 | G2

D2 ends with the hypersequent IB,Γ⇒ ∆ | H. We should obtain

Γ⇒ ∆ | AΓ∆
i1
× AΘΛ

1 | . . . | AΓ∆
in × AΘΛ

n | AΓ∆
i1
× AΠΣ

1 | . . . | AΓ∆
in × AΠΣ

n | H | G1 | G2

Using the inductive hypothesis and (⇒ I), we get the following inference.

Γ⇒ ∆ | B,AΓ∆
i1
× AΘΛ

1 | AΓ∆ΘΛ
2,...,n | H | G1 Γ⇒ ∆ | AΓ∆

i1
× AΠΣ

1 , B | AΓ∆ΠΣ
2,...,n | H | G2

Γ⇒ ∆ | ⇒ IB | AΓ∆
i1
× AΘΛ

1 | AΓ∆ΘΛ
2,...,n | AΓ∆

i1
× AΠΣ

1 | AΓ∆ΠΣ
2,...,n | H | G1 | G2

where

• AΓ∆ΘΛ
2,...,n = AΓ∆

i2
× AΘΛ

2 | . . . | AΓ∆
in × AΘΛ

n • AΓ∆ΠΣ
2,...,n = AΓ∆

i2
× AΠΣ

2 | . . . | AΓ∆
in × AΠΣ

n

By Lemma 11, the claim holds since this case satisfies the condition of application of the Lemma.
Subcase 7.2. A is not the principal formula. The last inference of D1 is as follows.

B,AΘΛ
1 , Ai1 | . . . | AΘΛ

n , Ain | G1 AΠΣ
1 , Ai1 , B | . . . | AΠΣ

n , Ain | G2

⇒ IB | AΘΛ
1 , Ai1 | . . . | AΘΛ

n , Ain | AΠΣ
1 , Ai1 | . . . | AΠΣ

n , Ain | G1 | G2

D2 ends with the hypersequent A,Γ⇒ ∆ | H. We should obtain:

⇒ IB | AΓ∆
i1
× AΘΛ

1 | . . . | AΓ∆
in × AΘΛ

n | AΓ∆
i1
× AΠΣ

1 | . . . | AΓ∆
in × AΠΣ

n | H | G1 | G2

By the induction hypothesis and (I ⇒), we get the required result similarly to Case 4 of this
Lemma.

Case 8. The rule of the last inference of D1 is (∼ ⇒). In this case A is not principal and is
contained in a side hypersequent G. The case is similar to the Case 1 of Lemma 11.

The other cases are treated similarly.

Theorem 13 (Constructive elimination of cuts). Let ♣ ∈ {B,I, ◦, •, ◦̃, •̃,∼, ∼̇} and L ∈ {S5♣,Z, Ż}.
If a derivation D in HSL has an application of (Cut), then it can be transformed into a cut-free
derivation D′.



32 CHAPTER 2. PROOF SYSTEMS FOR SELECTED MODAL LOGICS

Proof. Assume that a derivation D in HSL has at least one application of (Cut), i.e., r(D) > 0. The
proof proceeds by the double induction on 〈r(D), nr(D)〉, where nr(D) is the number of applications
of (Cut) in D. Consider the uppermost application of (Cut) in D with a cut rank r(D). We
apply Lemma 12 to its premises and decrease either r(D) or nr(D). Then we can use the inductive
hypothesis.

2.3.3 A few more modalities

There are other modalities one may also consider. For example, Pan and Yang [143] introduced the
following weak essentially true and strong accidentally true modalities:

• ϑ(~A, x) = 1 iff ϑ(A, x) = 0 or ∃y∈Wϑ(A, y) = 1,

• ϑ(�A, x) = 1 iff ϑ(A, x) = 1 and ∀y∈Wϑ(A, y) = 0.

Thus, ~A = ¬A∨♦A = A→ ♦A and �A = A∧�¬A. Since these modalities are quite unusual,
we decided not to include them into the main part of our paper, but we can present sound, complete,
and cut-free hypersequent calculi for them:

(~⇒)
Γ⇒ ∆, A | H A⇒ | G
~A,Γ⇒ ∆ | H | G

(⇒ ~)
A,Γ⇒ ∆ | Θ⇒ Λ, A | H
Γ⇒ ∆,~A | Θ⇒ Λ | H

(� ⇒)
A,Γ⇒ ∆ | Θ⇒ Λ, A | H
�A,Γ⇒ ∆ | Θ⇒ Λ | H

(⇒ �)
Γ⇒ ∆, A | H A⇒ | G

Γ⇒ ∆,�A | H | G

By analogy we may define weak essentially false and strong accidentally false modalities as follows:

• ϑ(~̃A, x) = 1 iff ϑ(A, x) = 1 or ∃y∈Wϑ(A, y) = 0,

• ϑ(�̃A, x) = 1 iff ϑ(A, x) = 0 and ∀y∈Wϑ(A, y) = 1.

Hence, ~̃A = A ∨ ♦¬A = ¬A → ♦¬A and �̃A = ¬A ∧ �A. The appropriate sound, complete,
and cut-free hypersequent calculi for them are presented below:

(~̃⇒)
A,Γ⇒ ∆ | H ⇒ A | G
~̃A,Γ⇒ ∆ | H | G

(⇒ ~̃)
Γ⇒ ∆, A | A,Θ⇒ Λ | H
Γ⇒ ∆, ~̃A | Θ⇒ Λ | H

(�̃ ⇒)
Γ⇒ ∆, A | A,Θ⇒ Λ | H
�̃A,Γ⇒ ∆ | Θ⇒ Λ | H

(⇒ �̃)
A,Γ⇒ ∆ | H ⇒ A | G

Γ⇒ ∆, �̃A | H | G

Among other non-standard modalities we would like to mention the so-called ‘boxdot’ modality
�A = �A ∧ A introduced by Boolos [18] for the needs of provability logic and being interpreted as
‘provable and true’ (for its use in the context of essence and accident logics see [185]):

• ϑ(�A, x) = 1 iff ϑ(A, x) = 1 and ∀y∈Wϑ(A, y) = 1.

The appropriate rules for � are as follows:

(�⇒)
A,Γ⇒ ∆ | H A,Θ⇒ Λ | G
�A,Γ⇒ ∆ | Θ⇒ Λ | H | G

(⇒ �)
Γ⇒ ∆, A | H ⇒ A | G

Γ⇒ ∆,�A | H | G
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2.4 Cut-free nested sequent calculi for the logics with non-
standard modalities weaker than S5

For the case of the logics weaker than S5 we need a more general approach than hypersequent calcu-
lus.12 Such an approach is a generalisation of hypersequents which was suggested independently by
various authors under various names: nested sequents (Kashima, 1994, [94]), deep sequents (Brünnler,
2006, [22]), and tree-hypersequents (Poggiolesi, 2008 [158, 157]). We will follow Poggiolesi’s expli-
cation of this method. To begin with, let us give an informal explanation of the notion of a nested
sequent. Let us consider the following Kripke tree:

x

y1 y2 y3

To present this structure proof-theoretically we replace worlds with sequents:

Γ0 ⇒ ∆0

Γ1 ⇒ ∆1 Γ2 ⇒ ∆2 Γ3 ⇒ ∆3

Of course, if we formulate rules with such notation, they will be too clumsy. So it is better to
use a more compact notation:

Γ0 ⇒ ∆0/Γ1 ⇒ ∆1; Γ2 ⇒ ∆2; Γ3 ⇒ ∆3

We can think about more complicated example:

x

u y

y1 y2

y3 y4 y5

z

We put Si = Γi ⇒ ∆i (where 0 6 i 6 8). Then we obtain the following picture:

S0

S1 S2

S4 S5

S6 S7 S8

S3

And it can be written as follows:

S0/S1; (S2/S4; (S5/S6;S7;S8));S3

12This section contains previously unpublished results by the author.
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To sum up, a nested sequent is an encoding of Kripke trees by means of sequents. Now let us
give a formal definition, following [158, 157].

Definition 14 (Nested sequent). [157, Definition 6.1]

• If S is a sequent, then S is a nested sequent.

• If S is a sequent and N1, . . . ,Nm are nested sequents, then S/N1; . . . ;Nm is a nested sequent.

Definition 15. A translation τ of a sequent Γ ⇒ ∆ into a formula is defined as follows, where
A1, . . . , Al are all the elements of Γ, and B1, . . . , Bm are all the elements of ∆:

τ(Γ⇒ ∆) =


(A1 ∧ . . . ∧ Al)→ (B1 ∨ . . . ∨Bm) iff Γ 6= ∅,∆ 6= ∅;
B1 ∨ . . . ∨Bm iff Γ = ∅,∆ 6= ∅;
¬(A1 ∧ . . . ∧ Al) iff Γ 6= ∅,∆ = ∅;
p ∧ ¬p iff Γ = ∅,∆ = ∅.

Definition 16. [157, Definition 6.2] A translation σ of a nested sequent built into a formula is defined
as follows:

• ρ(Γ⇒ ∆) = τ(Γ⇒ ∆);

• ρ(S/N1; . . . ;Nm) = ρ(S) ∨�ρ(N1) ∨ . . . ∨�ρ(Nm).

In the case of logics without � in the language, one may express it via other connectives and
modify this definition in the appropriate way. For example, if B is in the language, then the second
clause of this definition is as follows:

• ρ(S/N1; . . . ;Nm) = ρ(S) ∨
(
ρ(N1) ∧Bρ(N1)

)
∨ . . . ∨

(
ρ(Nm) ∧Bρ(Nm)

)
.

Of course, this translation works only for logics with non-standard modalities such that � is
expressed in them (only reflexive (non)contingency logics and only serial essence (accidence) logics).
However, later we will show a more general way of checking the soundness of the rules that is
applicable to all the logics in question.

Let N be a nested sequent and S be a sequent which is a part of N. Then we write N[S], if we
want to say something about S. A formal treatment of the expression N[S] is given in [157], where
the notion of a zoom tree-hypersequent is introduced.

Definition 17. [157, Definition 6.3] The notion of a zoom nested sequent is inductively defined as
follows:

• [∗] is a zoom nested sequent,

• if N1, . . . ,Nl are nested sequents, then [∗]/N1; . . . ;Nl is a zoom nested sequent,

• if N1[∗] is a zoom nested sequent and N2, . . . ,Nl are nested sequents, then [∗]/N1[∗]; . . . ;Nl is
a zoom nested sequent,

• if S is a sequent, N1[∗] is a zoom nested sequent, and N2, . . . ,Nl are nested sequents, then
S/N1[∗]; . . . ;Nl is a zoom nested sequent,

• if S is a sequent, N1[∗][∗] is a zoom nested sequent, N2, . . . ,Nl are nested sequents, then
S/N1[∗][∗]; . . . ;Nl is a zoom nested sequent.

Definition 18. [157, Definition 6.4] For all zoom nested sequents N[∗], or N[∗][∗], and nested
sequents K and L, we define N[K] and N[K][L], the result of substituting K into N[∗], and the result
of substituting K and L in N[∗][∗], respectively, as follows, where S1 and S2 are sequents:

• if N[∗] = [∗], then N[K] = K,
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• if N[∗] = [∗]/N1; . . . ;Nl and K = S1/M1; . . . ;Mm, then N[K] = S1/N1; . . . ;Nl;M1; . . . ;Mm,

• if N[∗][∗] = [∗]/N1[∗]; . . . ;Nl and K = S1/M1; . . . ;Mm, then

N[K][L] = S1/N1[L]; . . . ;Nl;M1; . . . ;Mm,

• if N[∗] = S2/N1[∗], . . . ,Nl, then N[K] = S2/N1[K], . . . ,Nl,

• if N[∗][∗] = S2/N1[∗][∗], . . . ,Nl, then N[K][L] = S2/N1[K][L], . . . ,Nl.

Let us describe Poggiolesi’s nested sequent (tree-hypersequent) calculi for modal logics [157,
Section 6.2, p. 126–127]. The axiom (applied for any propositional variable p) and propositional
rules are as follows:

N[p,Γ⇒ ∆, p]

[¬ ⇒]
N[Γ⇒ ∆, A]

N[¬A,Γ⇒ ∆]
[⇒ ¬]

N[A,Γ⇒ ∆]

N[Γ⇒ ∆,¬A]

[∧ ⇒]
N[A,B,Γ⇒ ∆]

N[A ∧B,Γ⇒ ∆]
[⇒ ∧]

N[Γ⇒ ∆, A] N[Γ⇒ ∆, B]

N[Γ⇒ ∆, A ∧B]

[∨ ⇒]
N[A,Γ⇒ ∆] N[B,Γ⇒ ∆]

N[A ∨B,Γ⇒ ∆]
[⇒ ∨]

N[Γ⇒ ∆, A,B]

N[Γ⇒ ∆, A ∨B]

[→⇒]
N[Γ⇒ ∆, A] N[B,Γ⇒ ∆]

N[A→ B,Γ⇒ ∆]
[⇒→]

N[A,Γ⇒ ∆, B]

N[Γ⇒ ∆, A→ B]

[↔⇒]
N[B,Γ⇒ ∆, A] N[A,Γ⇒ ∆, B]

N[Γ⇒ ∆, A↔ B]
[⇒↔]

N[A,B,Γ⇒ ∆] N[Γ⇒ ∆, A,B]

N[A↔ B,Γ⇒ ∆]

Modal rules for the logic K (where X is a multiset of nested sequents) are given below:

[�⇒]
N[�A,Γ⇒ ∆/(A,Θ⇒ Λ/X)]

N[�A,Γ⇒ ∆/(Θ⇒ Λ/X)]
[⇒ �]

N[Γ⇒ ∆/⇒ A]

N[Γ⇒ ∆,�A]

Poggiolesi [157] does not formulate rules for ♦, but it is quite easy to find such rules, using the
equality ♦A = ¬�¬A:

[♦⇒]
N[Γ⇒ ∆/A⇒]

N[♦A,Γ⇒ ∆]
[⇒ ♦]

N[Γ⇒ ∆,♦A/(Θ⇒ Λ, A/X)]

N[Γ⇒ ∆,♦A/(Θ⇒ Λ/X)]

As for extensions of K, Poggiolesi proposes special logical rules (in two versions, see pp. 125
and 127 in [157], we present the second one) and special structural rules ([157, p. 125]). Each pair
of these rules corresponds to axioms/properties of the accessibility relation. Both special logical
and structural rules are sound with respect to frames with the corresponding properties of their
accessibility relations. T-, D-, B-, 4-, and 5-axioms can be proved by means of the corresponding
special logical rules as well as the corresponding structural logical rules. Both types of the rules
are helpful for the cut elimination: in order to eliminate cuts produced by special logical rules, one
needs special structural rules. At that special structural rules are shown to be admissible in the
calculi with special logical rules [157, Lemmas 6.13–6.17]. On the other hand, a careful examination
of Poggiolesi’s cut elimination proof shows that if we consider calculi without special logical rules,
but with special structural rules postulated as primitive ones, then, obviously, we do not have cases
produced by special logical rules (which are the most complicated ones), but we have new cases
produced by special structural rules which can be easily solved (such cases are observed and treated
in our cut elimination proof for non-standard modalities in Section 2.4.2). At that as Poggiolesi
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notes, the rules corresponding to 5-axiom “do not reflect the strength and power“ of this axiom [157,
p. 126], since there are some problems with cut elimination (the calculus for K5 obtained in such
a way is not cut-free) and even completeness. As a result, in our study of non-standard modalities,
we do not treat Euclidean logics, in order to avoid such problems. Let us list the above-mentioned
special logical and structural rules:

[D]
N[�A,Γ⇒ ∆/A⇒]

N[�A,Γ⇒ ∆]
[D̃]

N[Γ⇒ ∆/⇒]

N[Γ⇒ ∆]

[T]
N[�A,A,Γ⇒ ∆]

N[�A,Γ⇒ ∆]
[T̃]

N[Γ⇒ ∆/(Θ⇒ Λ/X)]

N[Γ,Θ⇒ ∆,Λ/X]

[4]
N[�A,Γ⇒ ∆/(�A,Θ⇒ Λ/X)]

N[�A,Γ⇒ ∆/(Θ⇒ Λ/X)]
[4̃]

N[Γ⇒ ∆/(Θ⇒ Λ/X)]

N[Γ⇒ ∆/(⇒ /Θ⇒ Λ/X)]

[B]
N[A,Γ⇒ ∆/(�A,Θ⇒ Λ/X)]

N[Γ⇒ ∆/(Θ⇒ Λ/X)]
[B̃]

N[Γ⇒ ∆/(Θ⇒ Λ/(Ξ⇒ Π/X);Y )]

N[Γ,Ξ⇒ ∆,Π/(Θ⇒ Λ/X;Y )]

[5]
N[�A,Γ⇒ ∆/(�A,Θ⇒ Λ/X)]

N[Γ⇒ ∆/(�A,Θ⇒ Λ/X)]
[5̃]

N[Γ⇒ ∆/(Θ⇒ Λ/(Ξ⇒ Π/X);Y )]

N[Γ⇒ ∆/(Ξ⇒ Π/X); (Θ⇒ Λ/Y )]

As follows from [157, Lemma 10.6], all the propositional rules, the modal rules and the special
logical rules are invertible. The following structural rules are shown to be height-preserving admissible
[157, Lemmas 10.2–10.5, 10.7]:

[EW]
N[Γ⇒ ∆]

N[Γ⇒ ∆/Π⇒ Σ]
[IW⇒]

N[Γ⇒ ∆]

N[A,Γ⇒ ∆]
[⇒IW]

N[Γ⇒ ∆]

N[Γ⇒ ∆, A]

[Merge]
N[Γ⇒ ∆/(Π⇒ Σ/X); (Θ⇒ Λ/Y )]

N[Γ⇒ ∆/(Π,Θ⇒ Σ,Λ/X;Y )]

[rn]
N

⇒ /N
[C⇒]

N[A,A,Γ⇒ ∆]

N[A,Γ⇒ ∆]
[⇒C]

N[Γ⇒ ∆, A,A]

N[Γ⇒ ∆, A]

In order to formulate cut in nested sequent approach, we need some auxiliary definitions.

Definition 19. [157, Definition 6.5] Given two nested sequents, N[Γ⇒ ∆] and M[Θ⇒ Λ] together
with an occurrence of a sequent in each, the relation of an equivalent position between two of their
sequents, in this case Γ ⇒ ∆ and Θ ⇒ Λ, N[Γ ⇒ ∆] ≈ M[Θ ⇒ Λ], is defined inductively in the
following way:

• Γ⇒ ∆ ≈ Θ⇒ Λ

• Γ⇒ ∆/X ≈ Θ⇒ Λ/Y

• If K[Γ⇒ ∆] ≈ L[Θ⇒ Λ], then Φ⇒ Π/K[Γ⇒ ∆];X ≈ Σ⇒ Υ/L[Θ⇒ Λ];Y .

“Intuitively, given two nested sequents, N[Γ⇒ ∆] and M[Θ⇒ Λ] together with an occurrence of
a sequent in each, the relation of equivalent position between two of their sequents holds when, by
considering N[Γ ⇒ ∆] and M[Θ ⇒ Λ] as trees, and Γ ⇒ ∆ and Θ ⇒ Λ as nodes of the trees, the
two nodes have the same height in their respective trees.” [158, p. 36] [the notation and terminology
adjusted].
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Definition 20. [157, Definition 6.6] Given two nested sequents N[Γ⇒ ∆] and M[Θ⇒ Λ] together
with an occurrence of a sequent in each, such that N[Γ⇒ ∆] ≈M[Θ⇒ Λ], the operation of product,
N[Γ⇒ ∆]⊗M[Θ⇒ Λ], is defined inductively in the following way:

• Γ⇒ ∆⊗Θ⇒ Λ = Γ,Θ⇒ ∆,Λ

• (Γ⇒ ∆/X)⊗ (Θ⇒ Λ/Y ) = Γ,Θ⇒ ∆,Λ/X;Y

• (Φ⇒ Π/K[Γ⇒ ∆];X)⊗(Ψ⇒ Υ/L[Θ⇒ Λ];Y ) = Φ,Ψ⇒ Π,Υ/(K[Γ⇒ ∆]⊗L[Θ⇒ Λ]);X;Y .

Given two tree-hypersequents N[Γ ⇒ ∆, A] and M[A,Θ ⇒ Λ] together with an occurrence of a
sequent in each, such that N[Γ⇒ ∆, A] ≈M[A,Θ⇒ Λ], the cut rule is:

[Cut]
N[Γ⇒ ∆, A] M[A,Θ⇒ Λ]

N⊗M[Γ,Θ⇒ ∆,Λ]

Let ♣ ∈ {B,I, ◦, •, ◦̃, •̃,∼, ∼̇}. Let us formulate a nested sequent calculus NSK♣ for the logic
K♣. It has propositional rules and the following modal rules:

[B⇒]
N[BA,Γ⇒ ∆/(A,Θ⇒ Λ/X)] N[BA,Γ⇒ ∆/(Ξ⇒ Π, A/Y )]

N[BA,Γ⇒ ∆/(Θ⇒ Λ/X); (Ξ⇒ Π/Y )]

[⇒ BL]
N[Γ⇒ ∆/A⇒]

N[Γ⇒ ∆,BA]
[⇒ BR]

N[Γ⇒ ∆/⇒ A]

N[Γ⇒ ∆,BA]

[I⇒L]
N[Γ⇒ ∆/A⇒]

N[IA,Γ⇒ ∆]
[I⇒R]

N[Γ⇒ ∆/⇒ A]

N[IA,Γ⇒ ∆]

[⇒ I]
N[Γ⇒ ∆,IA/(A,Θ⇒ Λ/X)] N[Γ⇒ ∆,IA/(Ξ⇒ Π, A/Y )]

N[Γ⇒ ∆,IA/(Θ⇒ Λ/X); (Ξ⇒ Π/Y )]

[◦ ⇒]
N[◦A,Γ⇒ ∆/(A,Θ⇒ Λ/X)] N[◦A,Ξ⇒ Π, A/Y ]

N[◦A,Γ,Ξ⇒ ∆,Π/Y ; (Θ⇒ Λ/X)]

[⇒ ◦L]
N[A,Γ⇒ ∆]

N[Γ⇒ ∆, ◦A]
[⇒ ◦R]

N[Γ⇒ ∆/⇒ A]

N[Γ⇒ ∆, ◦A]

[• ⇒L]
N[A,Γ⇒ ∆]

N[•A,Γ⇒ ∆]
[• ⇒R]

N[Γ⇒ ∆/⇒ A]

N[•A,Γ⇒ ∆]

[⇒ •] N[Γ⇒ ∆, •A/(A,Θ⇒ Λ/X)] N[Ξ⇒ Π, A, •A/Y ]

N[Γ,Ξ⇒ ∆,Π, •A/Y ; (Θ⇒ Λ/X)]

[◦̃ ⇒]
N[◦̃A,A,Θ⇒ Λ/X] N[◦̃A,Γ⇒ ∆/(Ξ⇒ Π, A/Y )]

N[◦̃A,Γ,Θ⇒ ∆,Λ/X; (Ξ⇒ Π/Y )]

[⇒ ◦̃L]
N[Γ⇒ ∆/A⇒]

N[Γ⇒ ∆, ◦̃A]
[⇒ ◦̃R]

N[Γ⇒ ∆, A]

N[Γ⇒ ∆, ◦̃A]

[•̃ ⇒L]
N[Γ⇒ ∆/A⇒]

N[•̃A,Γ⇒ ∆]
[•̃ ⇒R]

N[Γ⇒ ∆, A]

N[•̃A,Γ⇒ ∆]

[⇒ •̃] N[A,Θ⇒ Λ, •̃A/X] N[Γ⇒ ∆/(Ξ⇒ Π, A, •̃A/Y )]

N[Γ,Θ⇒ ∆,Λ, •̃A/X; (Ξ⇒ Π/Y )]
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[∼ ⇒]
N[Γ⇒ ∆/⇒ A]

N[∼A,Γ⇒ ∆]
[⇒ ∼]

N[Γ⇒ ∆,∼A/(A,Θ⇒ Λ/X)]

N[Γ⇒ ∆,∼A/(Θ⇒ Λ/X)]

[∼̇ ⇒]
N[∼̇A,Γ⇒ ∆/(Θ⇒ Λ, A/X)]

N[∼̇A,Γ⇒ ∆/(Θ⇒ Λ/X)]
[⇒ ∼̇]

N[Γ⇒ ∆/A⇒]

N[Γ⇒ ∆, ∼̇A]

Let ♣ ∈ {B,I, ◦, •, ◦̃, •̃,∼, ∼̇} and X1, . . .Xm ∈ {T,D,4,B}. A nested sequent calculus
NSKX1, . . .X

♣
m for a logic KX1, . . .X

♣
m is an extension of NSK♣ by the rules [X̃1], . . . , [X̃m].

Lemma 21. Let ♣ ∈ {B,I, ◦, •, ◦̃, •̃,∼, ∼̇} and X1, . . .Xm ∈ {T,D,4,B}. All the propositional
rules and the modal rules of nested sequent calculi NSK♣ and NSKX1, . . .X

♣
m are invertible.

Proof. Similarly to [157, Lemma 10.6].

Lemma 22. Let ♣ ∈ {B,I, ◦, •, ◦̃, •̃,∼, ∼̇} and X1, . . .Xm ∈ {T,D,4,B}. The rules [EW],
[IW⇒], [⇒IW], [Merge], [rn], [C⇒], and [⇒C] are height-preserving admissible in NSK♣ and
NSKX1, . . .X

♣
m.

Proof. Similarly to Lemmas 10.2–10.5 and 10.7 from [157].

Let us present some examples of proofs. Some proofs in NSKB are given below:

BA⇒ /A⇒ A BA⇒ /A⇒ A
[B⇒]

BA⇒ /⇒ A;A⇒
[⇒ ¬], [¬ ⇒]

BA⇒ /¬A⇒;⇒ ¬A
[⇒ BL]

BA⇒ B¬A/⇒ ¬A
[⇒ BR]

BA⇒ B¬A,B¬A
[⇒ C]

BA⇒ B¬A [⇒→]⇒ BA→ B¬A

B¬A⇒ /A⇒ A
[¬ ⇒]

B¬A⇒ /¬A,A⇒
B¬A⇒ /A⇒ A

[⇒ ¬]
B¬A⇒ /⇒ A,¬A

[B⇒]
B¬A⇒ /A⇒;⇒ A

[⇒ BL]
B¬A⇒ BA/A⇒

[⇒ BR]
B¬A⇒ BA,BA

[⇒ C]
B¬A⇒ BA [⇒→]⇒ B¬A→ BA

⇒ A [rn]
⇒ /⇒ A

[⇒ BR]⇒ BA
An example of a proof in NSTB, where X is BA,B(A→ B):

X⇒ /A⇒ A X⇒ /B ⇒ B

X⇒ /A,A→ B ⇒ B X⇒ /A⇒ A
[B⇒]

X⇒ /A→ B ⇒ B;A⇒

X⇒ /B ⇒ B

X⇒ /A,A,B ⇒ B

X⇒ /A,B ⇒ A→ B X⇒ /A⇒ A
[B⇒]

X⇒ /B ⇒ A→ B;A⇒
[B⇒]

B(A→ B),BA⇒ /A⇒;A⇒;⇒ B;B ⇒
[T̃]

A,B(A→ B),BA⇒ /A⇒;⇒ B;B ⇒
[T̃]

A,A,B(A→ B),BA⇒ /⇒ B;B ⇒
[C ⇒]

A,B(A→ B),BA⇒ /⇒ B;B ⇒
[⇒ BR]

A,B(A→ B),BA⇒ BB/B ⇒
[⇒ BL]

A,B(A→ B),BA⇒ BB,BB
[⇒ C]

A,B(A→ B),BA⇒ BB
[⇒→], 3x

⇒ A→
(
B(A→ B)→ (BA→ BB)

)
An example of a proof in NSBB:

⇒ /BA⇒ /A⇒ A ⇒ /BA⇒ /A⇒ A
[B⇒]

⇒ /BA⇒ /⇒ A;A⇒
[B̃]

A⇒ /BA⇒ /⇒ A
[T̃]

A⇒ /BA⇒ A
[⇒→]

A⇒ /⇒ BA→ A
[⇒ BR]

A⇒ B(BA→ A)
[⇒→]

⇒ A→ B(BA→ A)
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An example of a proof in NSK4B:

BA⇒ /A⇒ A BA⇒ /A⇒ A
[B⇒]

BA⇒ /⇒ A;A⇒
[4̃]

BA⇒ /⇒ /⇒ A;A⇒
[⇒ BR]

BA⇒ /⇒ BA/A⇒
[⇒ BL]

BA⇒ /⇒ BA,BA
[⇒ C]

BA⇒ /⇒ BA
[⇒ BR]

BA⇒ BBA [⇒→]⇒ BA→ BBA

2.4.1 Soundness and completeness

Following Poggiolesi [157], let us introduce the following definition and lemma.

Definition 23. [157, Definition 8.1] LetM = 〈W,R, ϑ〉, w ∈ W , and N be a nested sequent. Then
w |=M N is inductively defined as follows:

• w |=M Γ⇒ ∆ iff ∃B ∈ Γ(w 6|=M B) or ∃C ∈ ∆(w |=M C),

• w |=M Γ⇒ ∆/X iff w |=M Γ⇒ ∆ or ∃N ∈ X ∀u∈W (R(w, u) implies u |=M N).

For any multiset of formulas Γ, w |=M Γ is defined as ∃A∈Γ(w |=M A).
We write w |=∗M X iff ∀u∈W (R(w, u) implies u |=M X), where X is a metavariable for a formula,

a multiset of sequents, a nested sequent, and a multiset of a nested sequent.
Hence, we can write w |=M Γ⇒ ∆/X iff w |=M Γ⇒ ∆ or ∃N ∈ X, w |=∗M N.

Following [157], we will write w |=Cf X for the fact that w |=M X, for any nested sequent or
sequent X, any class of frames C with the property f , and any model M based on any frame that
belongs to Cf .

Lemma 24. [157, Lemma 8.2]

• For any sequents Γ⇒ ∆ and Θ⇒ Λ as well as any nested sequent N,

if ∀w(w |=Cf Γ⇒ ∆ implies |=Cf Θ⇒ Λ), then

∀w(w |=Cf N[Γ⇒ ∆] implies |=Cf N[Γ⇒ ∆/Θ⇒ Λ]).

• For any nested sequents K, L, and N,

if ∀w(w |=Cf K implies |=Cf L), then

∀w(w |=Cf N[K] implies |=Cf N[K/L]).

Lemma 25. Let ♣ ∈ {B,I, ◦, •, ◦̃, •̃,∼, ∼̇}. All the rules of NSK♣ are sound.

Proof. Similarly to [157, Theorem 8.3]. As an example, we show the rule [⇒ BL]. Suppose that
K♣ |= Γ ⇒ ∆/A ⇒. Then ∀w(w |=Cf Γ ⇒ ∆ or 6|=∗Cf A). Then ∀w(w |=Cf Γ ⇒ ∆ or 6|=Cf BA).
Thus, by Lemma 24, K♣ |= Γ⇒ ∆,BA.

Theorem 26. For any nested sequent N, if NSK♣ ` N, then K♣ |= N.

Proof. By induction on the height of the derivation, using Lemma 25.

Theorem 27. Let ♣ ∈ {B,I, ◦, •, ◦̃, •̃,∼, ∼̇} and X1, . . .Xm ∈ {T,D,4,B}. For any nested sequent
N, if NSKX1, . . .X

♣
m ` N, then KX1, . . .X

♣
m |= N.
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Proof. Follows from Theorem 26 and soundness of the special structural rules established in [157].

We present a semantic completeness proof for a nested sequent calculus for K♣, where ♣ ∈
{B,I, ◦, •, ◦̃, •̃,∼, ∼̇}, following Poggiolesi [157] (she herself follows Brünnler [22]). Completeness
for the extensions of K♣ follows from the established in [157] correspondence of the structural rules
[D̃], [T̃], [4̃], [B̃] for the properties of the accessibility relation. The calculus in question should be
slightly reformulated (the result of the reformulation will be called NSK♣+). For each rule <, we
define a rule <+ which has the principal formula from the conclusion in its premises. At that we
have < = <+ for the following rules: [B ⇒], [⇒ I], [◦ ⇒], [⇒ •], [◦̃ ⇒], [⇒ •̃], [⇒ ∼], [∼̇ ⇒]. For
the other rules <+ is as follows:

[¬ ⇒]+
N[¬A,Γ⇒ ∆, A]

N[¬A,Γ⇒ ∆]
[⇒ ¬]+

N[A,Γ⇒ ∆,¬A]

N[Γ⇒ ∆,¬A]

[∧ ⇒]+
N[A,B,A ∧B,Γ⇒ ∆]

N[A ∧B,Γ⇒ ∆]
[⇒ ∧]+

N[Γ⇒ ∆, A,A ∧B] N[Γ⇒ ∆, B,A ∧B]

N[Γ⇒ ∆, A ∧B]

[∨ ⇒]+
N[A ∨B,A,Γ⇒ ∆] N[A ∨B,B,Γ⇒ ∆]

N[A ∨B,Γ⇒ ∆]
[⇒ ∨]+

N[Γ⇒ ∆, A,B,A ∨B]

N[Γ⇒ ∆, A ∨B]

[→⇒]+
N[A→ B,Γ⇒ ∆, A] N[A→ B,B,Γ⇒ ∆]

N[A→ B,Γ⇒ ∆]
[⇒→]+

N[A,Γ⇒ ∆, B,A→ B]

N[Γ⇒ ∆, A→ B]

[↔⇒]+
N[B,Γ⇒ ∆, A,A↔ B] N[A,Γ⇒ ∆, B,A↔ B]

N[Γ⇒ ∆, A↔ B]

[⇒↔]+
N[A↔ B,A,B,Γ⇒ ∆] N[A↔ B,Γ⇒ ∆, A,B]

N[A↔ B,Γ⇒ ∆]

[⇒ BL]+
N[Γ⇒ ∆,BA/A⇒]

N[Γ⇒ ∆,BA]

†

[⇒ BR]+
N[Γ⇒ ∆,BA/⇒ A]

N[Γ⇒ ∆,BA]

‡

† where the sequent Γ⇒ ∆,BA does not have any immediate successive sequent (or more
succinctly, childsequent) that contains the formula A on the right side.
‡ where the sequent Γ⇒ ∆,BA does not have any immediate successive sequent (or more
succinctly, childsequent) that contains the formula A on the left side.

[I⇒L]+
N[IA,Γ⇒ ∆/A⇒]

N[IA,Γ⇒ ∆]

†

[I⇒R]+
N[IA,Γ⇒ ∆/⇒ A]

N[IA,Γ⇒ ∆]

‡

† where the sequent IA,Γ⇒ ∆ does not have any immediate successive sequent (or more
succinctly, childsequent) that contains the formula A on the right side.
‡ where the sequent IA,Γ⇒ ∆ does not have any immediate successive sequent (or more
succinctly, childsequent) that contains the formula A on the left side.

[⇒ ◦L]+
N[A,Γ⇒ ∆, ◦A]

N[Γ⇒ ∆, ◦A]

†

[⇒ ◦R]+
N[Γ⇒ ∆, ◦A/⇒ A]

N[Γ⇒ ∆, ◦A]

‡

† where the sequent A,Γ⇒ ∆, ◦A does not have any immediate successive sequent (or more
succinctly, childsequent) that contains the formula A on the right side.
‡ where the sequent Γ⇒ ∆, ◦A does not have any immediate successive sequent (or more
succinctly, childsequent) that contains the formula A on the left side.
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[• ⇒L]+
N[•A,A,Γ⇒ ∆]

N[•A,Γ⇒ ∆]

†

[• ⇒R]+
N[•A,Γ⇒ ∆/⇒ A]

N[•A,Γ⇒ ∆]

‡

† where the sequent •A,A,Γ⇒ ∆ does not have any immediate successive sequent (or more
succinctly, childsequent) that contains the formula A on the right side.
‡ where the sequent •A,Γ⇒ ∆ does not have any immediate successive sequent (or more
succinctly, childsequent) that contains the formula A on the left side.

[⇒ ◦̃L]+
N[Γ⇒ ∆, ◦̃A/A⇒]

N[Γ⇒ ∆, ◦̃A]

†

[⇒ ◦̃R]+
N[Γ⇒ ∆, A, ◦̃A]

N[Γ⇒ ∆, ◦̃A]

‡

† where the sequent Γ⇒ ∆, ◦̃A does not have any immediate successive sequent (or more
succinctly, childsequent) that contains the formula A on the right side.
‡ where the sequent Γ⇒ ∆, A, ◦̃A does not have any immediate successive sequent (or more
succinctly, childsequent) that contains the formula A on the left side.

[•̃ ⇒L]+
N[•̃A,Γ⇒ ∆/A⇒]

N[•̃A,Γ⇒ ∆]

†

[•̃ ⇒R]+
N[•̃A,Γ⇒ ∆, A]

N[•̃A,Γ⇒ ∆]

‡

† where the sequent •̃A,Γ⇒ ∆ does not have any immediate successive sequent (or more
succinctly, childsequent) that contains the formula A on the right side.
‡ where the sequent •̃A,Γ⇒ ∆, A does not have any immediate successive sequent (or more
succinctly, childsequent) that contains the formula A on the left side.

[∼ ⇒]+
N[∼A,Γ⇒ ∆/⇒ A]

N[∼A,Γ⇒ ∆]

‡

[⇒ ∼̇]+
N[Γ⇒ ∆, ∼̇A/A⇒]

N[Γ⇒ ∆, ∼̇A]

†

† where the sequent Γ⇒ ∆, ∼̇A does not have any immediate successive sequent (or more
succinctly, childsequent) that contains the formula A on the right side.
‡ where the sequent ∼A,Γ⇒ ∆ does not have any immediate successive sequent (or more
succinctly, childsequent) that contains the formula A on the left side.

Definition 28. [157, Definition 8.4] The set nested sequent of a nested sequent Γ⇒ ∆/M1; . . . ;Mm

is the underlying set of Θ ⇒ Λ/N1; . . . ;Nm, where N1; . . . ;Nm are the set nested sequent of
M1; . . . ;Mm. Clearly, the set nested sequent of a nested sequent is still a nested sequent since a
set is a multiset.

For any rule <+ we have the proviso that for all of its premises, the set nested sequent is different
from the set nested sequent of the conclusion.

Lemma 29. Let ♣ ∈ {B,I, ◦, •, ◦̃, •̃,∼, ∼̇}. For any nested sequent N, it holds that if NSK♣+ ` N,
then NSK♣ ` N.

Proof. By induction on the height of derivations in NSK♣+, using contraction and weakening.

Definition 30. [157, Definition 8.10] A leaf of a nested sequent is cyclic if in its branch there exists
a sequent that contains the same set of formulas.

Definition 31. [157, Definition 8.11] A sequent of a nested sequent is finished for a nested sequent
calculus NSK♣+ if no rule of that calculus applies to one of its formulas. A nested sequent is finished
for a nested sequent calculus NSK♣+ if all sequents that compose it are finished or cyclic.
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Definition 32. [157, Definition 8.12] We define a procedure prove(N,NSK♣+), which takes a nested
sequent N and a calculus NSK♣+, and builds a derivation tree for N by applying rules from that
calculus to non-initial and unfinished derivation leaves in the bottom-up fashion, as follows:

1. keep applying all the rules of NSK♣+ which are not the rules with the provisos above indicated
as † and ‡ long as possible;

2. wherever possible, apply these rules with the † and ‡ provisos once.

Repeat this operation until each non-initial derivation leaf of the tree-hypersequent N is finished. If
prove(N,NSK♣+) terminates and all derivation leaves are initial, then it succeeds; otherwise, i.e., if
it terminates and there is a non-initial derivation leaf, it fails.

Definition 33. [157, Definition 8.13] The size of a nested sequent N, s(N), is the number of sequents
that compose it. The set of subformulas of a nested sequent N, a nested sequent sf(N), is the set
of all subformulas of all formulas that compose all sequents that belong to the nested sequent.

Definition 34. [157, Definition 8.15] A nested sequent N is an immediate subtree of a nested sequent
M if M is of the form Γ ⇒ ∆/N;N1; ...;Nn. It is a proper subtree if it is an immediate subtree
either of M or of a proper subtree of M, and it is a subtree if it is either a proper subtree of M or
M = N. The set of all subtrees of M is denoted by st(M).

Lemma 35. [157, Lemma 8.14] For any nested sequent N, the procedure prove(N,NSK♣+) termi-
nates after at most 2|sf(N)| iterations.

Theorem 36. Let ♣ ∈ {B,I, ◦, •, ◦̃, •̃,∼, ∼̇}. For any nested sequent N, it holds that

(1) if K♣ |= N, then NSK♣ ` N,

(2) if prove(N,NSK♣+) fails, then K♣+ 6|= N.

Proof. Similarly to [157, Theorem 8.16]. The contraposition of (1) follows from (2). Suppose that
NSK♣ 6` N. By Lemma 29, NSK♣+ 6` N. By Lemma 35, prove(N,NSK♣+) has to fail. Let us
define a countermodel for N.

Let N∗ be the set nested sequent obtained from a nested sequent which is not an axiom. Let
Y be the set of all cyclic leaves in N∗. Let W = st(N∗) \ Y. Let f : Y 7→ W be some function
which maps a cyclic leaf to a nested sequent in W whose root carries the same set of formulas, and
extend f to st(N∗) by the identity on W . Define a binary relation R on W such that R(K,L) if, and
only if, either (i) L is an immediate subtree of K , or (ii) K has an immediate subtree M ∈ Y and
f(M) = L. Let ϑ(N, p) such that ϑ(N, p) = 1, if p occurs on the left side of a sequent Γ⇒ ∆ ∈ N,
and ϑ(N, p) = 0 otherwise.

LetM = (W,R, ϑ). As an example, we consider the case ♣ = B.
Claim 1. For all K,L ∈ W such that R(K,L), for all A occurring on the left side of a sequent

that belongs to the nested sequent N, we have: if BA ∈ K, then A ∈ L or ¬A ∈ L. By the definition
of R and the rules (B⇒) and (¬ ⇒), we have A in (the root sequent of) all immediate subtrees of
K.

Claim 2. For all K ∈ W , we have:

• for all A ∈ K such that they occur on the left side of the sequent, K |=M A,

• for all A ∈ K such that they occur on the right side of the sequent, K 6|=M A.

By induction on the complexity of the formula A. The basic case follows from the definition of
the valuation. The propositional cases are rather obvious. Let A = BB. Suppose that it occurs
on the right side of the sequent, then by the rules (⇒ BL) and (⇒ BR) as well as the rules for
negations, we have at least one M ∈ K with B ∈M and at least one M′ ∈ K with ¬B ∈M′. By the
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inductive hypothesis, M 6|=M B and M′ 6|=M ¬B (that is M′ |=M B). Thus, K 6|=M BB. Suppose
that BB occurs on the left side of the sequent. By Claim 1, B ∈M, for all M such that R(K,M),
or ¬B ∈M′, for all M′ such that R(K,M′). Using the inductive hypothesis, K |=M BB.

Claim 3. For all K ∈ st(N∗), f(K) 6|=M K.
By induction on the complexity of the nested sequent K, using Claim 2. See [157, Theorem 8.16].
Since all rules seen top-down preserve countermodels, Claim 3 implies that 6|=M N.

Theorem 37 (Cut admissibility). Let ♣ ∈ {B,I, ◦, •, ◦̃, •̃,∼, ∼̇}, L = NSK♣, and N be a nested
sequent. Then `NSL N implies that there is a cut-free proof of N in NSL.

Proof. Follows from Theorem 36 and the fact that in its proof, the rule of cut has not been used.

Theorem 38. Let ♣ ∈ {B,I, ◦, •, ◦̃, •̃,∼, ∼̇} and X1, . . .Xm ∈ {T,D,4,B}. For any nested sequent
N, if KX1, . . .X

♣
m |= N, then NSKX1, . . .X

♣
m ` N.

Proof. Follows from Theorem 36 and the fact (which follows from the results of [157]) that special
structural rules correspond to the properties of the accessibility relation.

2.4.2 Constructive proof of the cut admissibility theorem

Let us prove a constructive cut admissibility for the calculi in question, following the methods from
[157], where such proof was given for the logics built in the language L�.

Lemma 39. Given three zoom nested sequents K[∗], L[∗], and M[∗] such that K[∗] ≈ L[∗] ≈ M[∗],
if there is a rule < of NSL and a sequent Γ such that

< L[Γ]

K[Γ]

then, for any ∆, we have that

< L⊗M[∆]

K⊗M[∆]

Proof. We follow the method from [157, p. 143, Lemma 7.1]. By induction on the form of nested
sequents K[∗], L[∗], and M[∗]. The proof consists of the following parts:

(A) K[∗], L[∗], and M[∗] ≡ ∗.

(B) K[∗] ≡ ∗/X, L[∗] ≡ ∗/Y , and M[∗] ≡ ∗/Z.

(C) K[∗] ≡ Γ1 ⇒ ∆1/K
′[∗];X, L[∗] ≡ Γ2 ⇒ ∆2/L

′[∗];Y , and M[∗] ≡ Γ3 ⇒ ∆3/M
′[∗];Z.

Let

< Γ1 ⇒ ∆1/K
′[Θ1 ⇒ Λ1];X

Γ2 ⇒ ∆2/L′[Θ2 ⇒ Λ2];Y

For any Π⇒ Σ, we have that

< Γ1,Γ3 ⇒ ∆1,∆3/K
′[Θ1 ⇒ Λ1]⊗M′[Π⇒ Σ];X;Z

Γ2,Γ3 ⇒ ∆2,∆3/L′[Θ2 ⇒ Λ2]⊗M′[Π⇒ Σ];Y ;Z

The following subcases are distinguished.

(C.1) The rule < operates on Γ1 ⇒ ∆1:
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(C.1.1) The rule < operates on Γ1 ⇒ ∆1 only,
(C.1.2) The rule < operates between Γ1 ⇒ ∆1 and K′[Θ1 ⇒ Λ1];X.

(C.2) The rule < operates on X.

(C.3) The rule < operates on K′.

The cases (A), (B), (C.1.1), (C.2), and (C.3) are proven in [157]. The case (C.1.2) deals with
modal rules. Let us consider it on the example of the rules for B.

Let < be the rule [⇒ BL]. There are two subcases: (i) K′[Θ1 ⇒ Λ1];X is of the form B ⇒
;K′[Θ1 ⇒ Λ1];X ′, (ii) K′[Θ1 ⇒ Λ1];X is of the form B ⇒ ;K′′[Θ1 ⇒ Λ1];X. As an example, we show
the case (i),

Γ1 ⇒ ∆1/B ⇒ ;K′[Θ1 ⇒ Λ1];X ′

Γ1 ⇒ ∆1,BB ⇒ ;K′[Θ1 ⇒ Λ1];X ′

For any Π⇒ Σ, we have that

Γ1,Γ3 ⇒ ∆1,∆3/B ⇒ ;K′[Θ1 ⇒ Λ1]⊗M′[Π⇒ Σ];X ′;Z

Γ1,Γ3 ⇒ ∆1,∆3,BB/L′[Θ2 ⇒ Λ2]⊗M′[Π⇒ Σ];X ′;Z

The cases of the rules [⇒ BR] and [B⇒] are treated similarly.

Lemma 40. Let N[Γ⇒ ∆, A] and M[A,Π⇒ Σ] be such that N[Γ⇒ ∆, A] ≈M[A,Π⇒ Σ]. If

[Cut]

D1 D2

N[Γ⇒ ∆, A] M[A,Π⇒ Σ]

N⊗M[Γ,Π⇒ ∆,Σ]

and D1 and D2 do not contain any other application of the cut-rule, then we can construct a derivation
of N⊗M[Γ,Π⇒ ∆,Σ] with no application of the cut-rule.

Proof. Similarly to the proof of Lemma 7.2 from [157]. By a double induction on the complexity
of the cut-formula c(A)13 and on the sum of the heights of the derivations of the premises of the
cut-rule. The cases are distinguished according to the last rule applied to the left premise.

Case 1. N[Γ ⇒ ∆, A] is an axiom. This case is considered in the proof of Lemma 7.2 from
[157]: either the conclusion is also an axiom or it can be inferred from M[A,Π⇒ Σ] by internal and
external weakening rules.

Case 2. N[Γ⇒ ∆, A] is derived by a rule < such that A is not principal. The case is solved by
induction on the sum of the heights of the derivations of the premises of the cut-rule, using Lemma
39.

Subcase 2.1. N[Γ⇒ ∆, A] was obtained by the rule [⇒ BL]. The following application of cut

D′1
N[Γ⇒ ∆, A/B ⇒]

[⇒ BL]
N[Γ⇒ ∆, A,BB]

D2

M[A,Π⇒ Σ]
[Cut]

N⊗M[Γ,Π⇒ ∆,Σ,BB]

is reduced to the subsequent deduction, where cut is applied to a formula of a lower height:
D′1

N[Γ⇒ ∆, A/B ⇒]

D2

M[A,Π⇒ Σ]
[Cut]

N⊗M[Γ,Π⇒ ∆,Σ/B ⇒]
[⇒ BL]

N⊗M[Γ,Π⇒ ∆,Σ,BB]

13The definition is standard: c(p) = 1, c(∗A) = c(A)+1, where ∗ is an unary connective, c(A?B) = max(c(A), c(B))+
1, where ∗ is a binary connective.
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Subcase 2.2. N[Γ⇒ ∆, A] was obtained by the rule [⇒ BR]. Similarly to the previous subcase.
Subcase 2.3. N[Γ⇒ ∆, A] was obtained by the rule [B⇒]. The following application of cut

D′1
N[BB,Γ⇒ ∆, A/(B,Θ⇒ Λ/X)]

D′′1
N[BB,Γ⇒ ∆, A/(Ξ⇒ Υ, B/Y )]

[B⇒]
N[BB,Γ⇒ ∆, A/(Θ⇒ Λ/X); (Ξ⇒ Υ/Y )]

D2

M[A,Π⇒ Σ]

N⊗M[BB,Γ,Π⇒ ∆,Σ/(Θ⇒ Λ/X); (Ξ⇒ Υ/Y )]

is reduced to the subsequent deduction, where cut is applied to a formula of a lower height:
D′1

N[BB,Γ⇒ ∆, A/(B,Θ⇒ Λ/X)]

D2

M[A,Π⇒ Σ]

N⊗M[BB,Γ,Π⇒ ∆,Σ/(B,Θ⇒ Λ/X)]

D′′1

N[BB,Γ⇒ ∆, A/(Ξ⇒ Υ, B/Y )]

D2

M[A,Π⇒ Σ]

N⊗M[BB,Γ,Π⇒ ∆,Σ/(Ξ⇒ Υ, B/Y )]

N⊗M[BB,Γ,Π⇒ ∆,Σ/(Θ⇒ Λ/X); (Ξ⇒ Υ/Y )]

The subcases produced by other connectives are treated similarly.
Case 3. N[Γ ⇒ ∆, A] is derived by a rule < such that A is principal. The cases where < is a

propositional rule (or a rule for � or ♦) are covered in [157]. As an example, we consider the case
when < is a rule for B, [⇒ BL].

D′1
N[Γ⇒ ∆/B ⇒]

[⇒ BL]
N[Γ⇒ ∆,BB]

D2

M[BB,Π⇒ Σ]
[Cut]

N⊗M[Γ,Π⇒ ∆,Σ]

We need to consider the ways M[A,Π⇒ Σ] could be derived. If it is an axiom, then we go to the
Case 1. If BB is not the principal formula in D2, then we go to the Case 2. However, in contrast to
the proof from [157], we postulate structural rules [D̃], [T̃], [4̃], [B̃] as primitive ones. In the logics
with B, the case of the rule [D̃] is not applicable. Let us consider as an example the case of the rule
[T̃] (the case of the rule [B̃] is treated similarly, the rule [4̃] due to its shape cannot move BB from
one sequent to another). Let Π = Π′ ∪ Π′′ and Σ = Σ′ ∪ Σ′′.

D′1
N[Γ⇒ ∆/B ⇒]

[⇒ BL]
N[Γ⇒ ∆,BB]

D′2
M[Π′ ⇒ Σ′/BB,Π′′ ⇒ Σ′′]

[T̃]
M[BB,Π⇒ Σ]

[Cut]
N⊗M[Γ,Π⇒ ∆,Σ]

Then the transformation of the deduction is as follows, where cut can be eliminated due to the
induction hypothesis regarding the sum of the heights of the derivation of the premises of the rules
of cut:

D′1
N[Γ⇒ ∆/B ⇒]

[⇒ BL]
N[Γ⇒ ∆,BB]

D′2
M[Π′ ⇒ Σ′/BB,Π′′ ⇒ Σ′′]

[Cut]
N⊗M[Π′ ⇒ Σ′/Γ,Π′′ ⇒ Σ′′,∆]

[T̃]
N⊗M[Γ,Π⇒ ∆,Σ]

The last option is as follows: M[A,Π⇒ Σ] was obtained by [B⇒]. Poggiolesi has more options
[157] in a similar situation with �: M[A,Π ⇒ Σ] was obtained by the logical rules [D], [T], [B],
[4], or [5]. These cases constitute the largest part of the rest of her proof and are solved with the
help of the corresponding height-preserving admissible structural rules. We follow a different path:
we do not have such logical rules, hence such cases do not appear in our proof (instead we have
structural rules as primitive ones, but their cases are simple and have been just treated above). So
if M[A,Π⇒ Σ] was obtained by [B⇒], then we have the following deduction:
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D′1
N[Γ⇒ ∆/B ⇒]

[⇒ BL]
N[Γ⇒ ∆,BB]

D′2
N[BB,Π⇒ Σ/(B,Θ⇒ Λ/X)]

D′′2
N[BB,Π⇒ Σ/(Ξ⇒ Υ, B/Y )]

M[BB,Π⇒ Σ/(Θ⇒ Λ/X); (Ξ⇒ Υ/Y )]

N⊗M[Γ,Π⇒ ∆,Σ/(Θ⇒ Λ/X); (Ξ⇒ Υ/Y )]

We transform it in the subsequent way. Double lines indicate here several applications of internal
weakening rules as well as merge. The first application of [Cut] is eliminable due to the induction
hypothesis regarding the sum of the heights of the derivations of the premises, and second application
of [Cut] is eliminable due to the induction hypothesis regarding the complexity of the cut-formula.

D′1
N[Γ⇒ ∆/B ⇒]

[⇒ BL]
N[Γ⇒ ∆,BB]

D′′2
N[BB,Π⇒ Σ/(Ξ⇒ Υ, B/Y )]

[Cut]
N⊗M[Γ,Π,⇒ ∆,Σ/(Ξ⇒ Υ, B/Y )]

D′1
N[Γ⇒ ∆/B ⇒]

[Cut]
N⊗N⊗M[Γ,Γ,Π,⇒ ∆,∆,Σ/(Ξ⇒ Υ/Y )]

N⊗M[Γ,Π,⇒ ∆,Σ/(Ξ⇒ Υ/Y )]
[EW]

N⊗M[Γ,Π,⇒ ∆,Σ/(Θ⇒ Λ/X); (Ξ⇒ Υ/Y )]

Theorem 41 (Constructive elimination of cut). Let ♣ ∈ {B,I, ◦, •, ◦̃, •̃,∼, ∼̇} and X1, . . .Xm ∈
{T,D,4,B}. Any derivation D in NSKX1, . . .X

♣
m ` N can be effectively transformed into a deriva-

tion D′, where there is no application of the rule of cut.

Proof. By induction on the number of cuts, using Lemma 40.

2.5 Natural deduction systems for selected logics with non-
standard modalities

In the previous sections, we considered a sequent-based approach to modalities: hypersequent calculi
for S5-style logics and nested sequent calculi for KX-style logics, where X ⊆ {T,D,4,B}. In this
section, we are going to focus on the natural deduction approach. In the previous sections, the
cut admissibility theorem played an important role in our studies: which is not surprising, since it
might be called the most important theorem in proof theory. In the case of natural deduction, the
normalisation theorem is usually considered as an analogue of cut admissibility. So we are going to
deal with the normalisation theorem. At that point, normalisation is always proved for the tree-
format natural deduction systems with a Gentzen-Prawitz-style definition of the notion of deduction.
This circumstance seriously restricts our possible choice of natural deduction systems for modal
logics. We have already mentioned above some of such systems: Prawitz’s original approach [161]
(later some mistakes in his proof were found by Medeiros and Da Paz [120]) and the approach by
Biermann and de Paiva [16]. We would like to focus on the later approach: Biermann and de Paiva
have a relatively simple proof of the normalisation theorem, one of their rules can be observed as a
general elimination rule. We will show how all their rules can be represented in the form of general
elimination or general introduction rules. It is important for us, because of two reasons: we would like
to follow Kürbis’ strategy in proving the normalisation theorem and such a type of rules is needed
for it, and such rules are very helpful in the formulation of the rules for n-ary Boolean connectives
by Segerberg’s general method [173] (to be considered later in this section) and n-ary three- and
four-valued connectives produced by Kooi and Tamminga’s correspondence analysis [96, 189, 97] (a
form of Segerberg’s method). We would like to make this work as uniform as possible: so if Boolean
and many-valued cases require general introduction and elimination rules, we would like to have
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the same type of rules for modalities as well. Kürbis’ strategy requires the use of such rules to be
applied, and at the same time, it seems to be the most convenient and effective strategy, if one deals
with general introduction and elimination rules. Also, such a choice of rules and strategy allows to
overcome some difficulties that arose in Prawitz’s proof for classical logic [161] (Prawitz considers
the language without disjunction, while Kürbis’ proof brings it back while used).

Yet another important issue we would like to mention at the beginning of this section: before
we prove normalisation for modal logic we need to have a proof of normalisation for classical logic.
It sounds obvious, but in contrast to the case of sequent calculus where there is no problem with
cut admissibility for classical logic, there are some difficulties with the proof of the normalisation
theorem for classical logic. The first proof was presented by Prawitz [161]. However, the choice of
language is restricted: no disjunction and no existential quantifier. A brilliant and successful attempt
to overcome this difficulty has been made by St̊almark [182]: this restriction is not applicable for his
proof. But there is another restriction in his case: it is crucial that negation is present in the language
and the specific rules for it are used, in particular the following rule has to be in the system (we give
it in two forms, with negation (on the left), and with implication together with falsum constant (in
the centre), it is well-known that ¬A can be defined as A → ⊥; the right-most rule is Peirce rule,
which we will discuss a bit later and which is in a sense a more general rule: instead of ⊥ it has an
arbitrary formula B):

[¬A]
D
B

B

[A→ ⊥]
D
B

B

[A→ B]
D
B

B

Zimmermann [199] developed another proof: he used Peirce’s rule, and it is not necessary for him
to have a negation in the language, but the presence of an implication and Peirce’s rule has become
necessary. At that point, the choice of other connectives is flexible.

In addition to these restrictions on the languages, the above-mentioned proofs have one more
disadvantage: they do not lead to the standard subformula property. Both of these issues were
improved by Kürbis [103]: he considers the language with negation, conjunction, disjunction, and
implication (later on, an existential quantifier has been added, but there are some difficulties with
the general quantifier), and that any of these connectives can be removed from the language without
any troubles, as well as the standard subformula property has been established. The price for these
advantages (and at the same time, what made them possible) is the usage of general introduction
and elimination rules. Notice that Kürbis uses a natural system with such rules developed by Milne
[125]. So it seems reasonable to choose this system for consideration and extend it by modalities.
However, we can go even further. In a recent paper [62], Geuvers and Hurkens prove the normalisation
theorem and established the subformula property for classical propositional logic formulated in the
language with at least one n-ary Boolean connective. The proof is obtained with the help of λ- and
µ-abstractions. One of the considered in [62] natural deduction system is originally due to Segerberg
[173]. Because of its generality we would like to consider this system. Moreover, we are going to
present our own of the normalisation theorem for it: we do not use λ- and µ-abstractions, but
generalise Kürbis’ proof from [103].

After that, we add to Segerberg’s system the modified versions of Biermann and de Paiva’s [16]
rules for � and ♦ (although, unfortunately, not together but separately, since the rules were originally
invented for intuitionistic modal logic and they block the proofs of the formulas �A ↔ ¬♦¬A and
♦A ↔ ¬�¬A) and prove normalisation for S4 and S5 in the language with at least one Boolean
n-ary connective and either � and ♦. Then we extend this result for the case of negative modalities:
∼ and ∼̇. Finally, we discuss the difficulties that arise during our attempts to formulate natural
deduction rules for the other non-standard modalities.

The normalisation theorem for a natural deduction system is a statement that any deduction
in it can be transformed into one in a normal form, that is a deduction such that “(i) it contains
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no maximal formula, that is a formula that is the conclusion of an introduction rule and the major
premise of an elimination rule (for its main connective); and (ii) no maximal segment, that is a
sequence of formulas of the same shape arising from the applications of certain rules the last of
which is major premise of an elimination rule.” [104, p. 14224] The usage of general introduction
rules requires some changes in this framework: as suggested in [104], maximal formula is understood
as the major premise of a general elimination rule that is the major assumption discharged by an
application of a general introduction rule (the major assumption of a general introduction rule for
a connective ∗ is the assumption with a formula with ∗ as its main operator which is discharged
by this rule). Here we need to emphasize one important feature of general introduction rules: “The
introduction rules for a connective ∗ are formulated in terms of the discharge of assumptions of the
form A∗B, and every rule of the system is one that allows the derivation of an arbitrary formula from
side-deductions of that formula and some further premises, as is the case with disjunction elimination
in Gentzen’s system.” [104, p. 14224] This assumption A ∗ B is the major one, in contrast to some
other assumptions, minor ones, which the rule may have. We would like to give one more important
quotation from [104] clarifying the nature of the rules we are dealing with:

“The difference between introduction and elimination rules lies in whether a formula with
the connective governed by the rules as main operator is discharged above a side-deduction
required for an application of the rule or whether such a formula is a premise of the rule.”
[104, p. 14224–14225]

One of the important consequences of the normalisation theorem (and shape of the rules) is the
subformula property : a deduction has it iff “any formula that occurs on it is a subformula of either
an undischarged assumption or of the conclusion.” [104, p. 14224]

As we said above, we are going to prove normalisation for Segerberg’s natural deduction sys-
tem. This calculus is based on the idea of a 1-1 correspondence between inference rules and truth
table entries. A rule is sound if and only if the connective in question has such an entry. Each entry
has its own corresponding rule (or several rules). How does one obtain a sound and complete natural
deduction system for a connective? Take as inference rules all the rules that correspond to all its
entries, that is, those that are sound iff this connective has these entries.

The idea of using 1-1 correspondence between truth table entries and inference rules later on was
independently rediscovered at least twice: first by Kooi and Tamminga [96, 189] for three-valued
logics, and then by Geuvers and Hurkens [60] for classical logic (in [60] exactly Segerberg’s system is
reopened) and intuitionistic logic (despite of the fact that it is a non-tabular logic and the method
at the first glance seems to be suitable only for tabular logics). Geuvers and Hurkens [61] presented
a normalisation proof for their system for intuitionistic logic, but left the classical case untouched.

Let us consider a propositional language L(})m with the alphabet 〈P ,}1, . . . ,}m, (, )〉, where P
is the set of propositional variables {p1, p2, . . .}, m > 1, }i (1 6 i 6 m) is an n-ary connective for
n > 1. The set F(})m of all L(})m-formulas, respectively, is defined inductively in a standard way.

Let us introduce the following notational convention which is in need to formulate Segerberg’s
inference rules.

Notation 42. Consider the set of natural numbers s = {1, . . . , n}. By a 2-partitioning of s we mean
an ordered pair 〈I, J〉 such that I ∪ J = s and I ∩ J = ∅.

For a better understanding of the relation of Segerberg’s rules and truth tables, it is useful to
apply also the subsequent notational convention.

Notation 43. In what follows, we are going to consider a partitioning of the following type: 〈t, f〉,
where t = {i ∈ s | v(Ai) = 1, Ai ∈ F(})m} and f = {j ∈ s | v(Aj) = 0, Aj ∈ F(})m}.

Besides, the following notation, which is rather in the spirit of Kooi and Tamminga [96, 189], is
appropriate for the calculi in question.
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Notation 44. The expression f}(x1, . . . , xn) = y, where x1, . . . , xn, y ∈ {1, 0}, means that if v(A1) =
x1, . . . , v(An) = xn, then v(}(A1, . . . , An)) = y, for each valuation v and all formulas A1, . . . , An.
The expression f}

(
〈t, f〉

)
= x, where x ∈ {1, 0}, means that if v(Ai) = 1 (for each i ∈ t), and

v(Aj) = 0 (for each j ∈ f), then v(}(A1, . . . , An)) = x, for each valuation v.

Let us give the following definition from [145, Definition 4.1] restricted to the two-valued case
(which is a slightly generalized version of Kooi and Tamminga’s definition [96, Definition 2.1]) which
perfectly suits for Segerberg’s approach.

Definition 45 (Generalized single entry correspondence). Let x1, . . . , xn, y ∈ {1, 0} and A1, . . . , Ah,
B1, . . . , Bg, C1, . . . , Ct ∈ F}(m). Let E be a truth table (or matrix) entry of the type f}(x1, . . . , xn) =
y. Let 1 6 l 6 h and Il/Al be an inference scheme of the type B1, . . . , Bg, C1 ` Al, . . . , Ct ` Al/Al or
C1 ` Al, . . . , Ct ` Al/Al. Then E is characterised by inference schemes I1/A1, . . . , Ih/Ah, if

E if and only if I1 |= A1, . . . , Ik |= Ak.

By connectives we mean ¬ and }. By atomic formulas we understand propositional variables.
By literals we mean propositional variables and their negations. We consider tree-style deductions
which have (un)discharged assumptions at the leaves and the conclusion at the root. We follow the
policy regarding assumptions and vacuous discharge used in [104]:

“Assumptions are assigned assumption classes, (at most) one for each assumption, marked
by a natural number, different numbers for different assumption classes. Formula occur-
rences of different types must belong to different assumption classes. Formula occurrences
of the same type may, but do not have to, belong to the same assumption class. Discharge
of assumptions is marked by a square bracket around the formula: [A]i, i being the as-
sumption class to which A belongs, with the same label also occurring at the application
of the rule at which the assumption is discharged. Assumption classes are chosen in such
a way that if one assumption of an assumption class is discharged by an application of
a rule, then it discharges all assumptions in that assumption class. Empty assumption
classes are permitted: they are used in vacuous discharge, when a rule that allows for
the discharge of assumptions is applied with no assumptions being discharged.” [104, p.
14229]

Let us formulate Segerberg’s rules [173, p. 558]:

R}
(
〈t, f〉1

)a,b
[}(A1, . . . , An)]a [A∗j ]

b

D1 D†2 D∗3
B A†i B

B
† for each i ∈ t, ∗ for each j ∈ f.

R}
(
〈t, f〉0

)a
[A∗j ]

a

D1 D†2 D∗3
}(A1, . . . , An) A†i B

B
† for each i ∈ t, ∗ for each j ∈ f.

As Segerberg notes [173, p. 558], each rule has i+ j + 1 premises and 1 conclusion.
Let us denote Segerberg’s natural deduction system for classical propositional logic via NDCPL.

In what follows, we write quite often }( ~A) for }(A1, . . . , An).

Definition 46 (Deduction in NDCPL).



50 CHAPTER 2. PROOF SYSTEMS FOR SELECTED MODAL LOGICS

1. The formula occurrence A is a deduction in NDCPL of A from the undischarged assumption A.

2. If D1 and D2 are deductions in NDCPL, then the applications of the above-mentioned rules are
deductions of B in NDCPL from the undischarged assumptions in D1 and D2 apart from those
in the assumption classes a and b, which are discharged.

3. Nothing else is a deduction in NDCPL.

We write Γ `NDCPL
A (or just Γ `CPL A) if there is a deduction inNDCPL of (the formula occurrence)

A from (occurrences of) some of the formulas in Γ.

Let us give some examples of the rules (the case when } is Boolean negation, denoted as ¬):

R¬
(
〈∅, {1}〉1

)a,b
[¬A]a [A]b

D1 D2

B B

B
R¬
(
〈{1}, ∅〉0

) D1 D2

¬A A

B

The rule R¬
(
〈∅, {1}〉1

)
is valid iff f¬(0) = 1, the rule R¬

(
〈{1},¬〉0

)
is valid iff f¬(1) = 0. As

follows from Segerberg’s results, these two rules form a sound and complete natural deduction system
for the negation fragment of classical logic. In what follows, we denote the rule R¬

(
〈∅, {1}〉1

)
via

(EM) and the rule R}
(
〈{1},¬〉0

)
via (EFQ).

One more example of the rules (the case when } is Boolean implication denoted as →):

R→
(
〈∅, {1, 2}〉1

)a,b,c
f→(0, 0) = 1

[A1 → A2]a [A1]b [A2]c

D1 D2 D3

B B B

B
R→
(
〈{1}, {2}〉1

)a,b
f→(0, 1) = 1

[A1 → A2]a [A1]b

D1 D2 D3

B B A2

B

R→
(
〈{2, 1}, ∅〉1

)a
f→(1, 1) = 1

[A1 → A2]a

D1 D2 D3

B A1 A2

B

R→
(
〈{1}, {2}〉0

)a
f→(1, 0) = 0

[A2]a

D1 D2 D3

A1 → A2 A1 B

B

These four rules form a sound and complete natural deduction system for the implication fragment
of classical logic. Together with the above-mentioned two rules for negation, they form a sound
and complete natural deduction system for the whole classical propositional logic formulated in the
language with negation and implication.

Notice that a more convenient version of the rules for the implication fragment of classical logic
is as follows (see e.g. [199]):

(→ I)a

[A1]a

D1

A2

A1 → A2

(MP)

D1 D2

A1 → A2 A1

A2

(P)a

[A1 → A2]a

D
A1

A1

General introduction/elimination rules for the implication fragment of classical logic are as follows
(used by Milne [125], (TR) is Tarski’s rule):

(→ I)a

[A1 → A2]a

D1 D2

A2 B

B
(TR)a,b

[A1]a [A1 → A2]b

D1 D2

B B

B
(→ E)a

[A2]a

D1 D2 D3

A1 → A2 A1 B

B
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The following theorem confirms the fact that there is a 1-1 correspondence between truth tables
entries and inference rules in Segerberg’s natural deduction system.

Theorem 47. Let L be CPL formulated in the language L(})m. Then:

(1) f}
(
〈t, f〉

)
= 0 iff R}

(
〈t, f〉0

)
is sound in L.

(2) f}
(
〈t, f〉

)
= 1 iff R}

(
〈t, f〉1

)
is sound in L.

Proof. Follows from Segerberg’s results [173].

Let us present an adaptation of [104, Definition 3] for our case.

Definition 48 (Terminology for Premises and Discharged Assumptions).

1. In applications of the general elimination rules, formula occurrences taking the places of }( ~A)
(rule R}

(
〈t, f〉0

)
) to the very left above the line are the major premises ; formula occurrences

taking the places of B at the end of subdeductions are the arbitrary premises ; formula occur-
rences taking the place of Ai in applications of R}

(
〈t, f〉0

)
are the minor premises.

2. In applications of the general introduction rules, formula occurrences taking the place of Aj in
applications of R}

(
〈t, f〉1

)
are the specific premises ; formula occurrences taking the places of B

at the end of subdeductions are the arbitrary premises ; formula occurrences taking the places
of the discharged assumptions }( ~A) (rule R}

(
〈t, f〉1

)
) are the major assumptions discharged

by applications of the respective rules; formula occurrences taking the place of the discharged
assumptions Aj in R}

(
〈t, f〉1

)
are the minor assumptions discharged by applications of the

respective rules.

Definition 49 (Maximal formula). A maximal formula with the main operator } in a deduction in
CPL is an occurrence of a formula }(A1, . . . , An) that is the major premise of an application of a
general elimination rule for } and the major assumption discharged by an application of a general
introduction rule for }.

Following [104, 103], we understand the notions of a segment, its length and degree, and a maximal
segment in the subsequent way.

Definition 50. [Degree of a formula] We define the degree d of a formula A inductively as follows,
where p is an atomic formula:

• d(p) = 1,

• d(}(A1, . . . , An)) =
∑i=n

i=1 d(Ai) + 1.

Definition 51 (Segment). A segment is a sequence of formula occurrences C1 . . . Ch of the same
shape in a deduction such that either

• h > 1, for all g < h, Cg is an arbitrary premise of an application of a rule and Cg+1 is its
conclusion, and Ch is not an arbitrary premise of an application of a rule,

• or h ≥ 1 and C1 is the conclusion of a general elimination rule and for all g < h, Cg is an
arbitrary premise of an application of a rule and Cg+1 is its conclusion, and Ch is not an
arbitrary premise of an application of a rule.

The second clause of the definition of the segment is a generalisation of the second clause of [103,
Definition 5]: there the rule (EFQ) (in the notation of [103], ¬E) is mentioned. We give a more
general formulation, because among the special cases of the rule R}

(
〈t, f〉0

)
, there are not only the

rule (EFQ), but also other rules like it. In general, they have the following shape (the case when
f = ∅):
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R}
(
〈t, ∅〉0

) D1 D†2
}(A1, . . . , An) A†i

B
† for each i ∈ t.

Definition 52 (Length and degree of a segment). The length of a segment is the number of formula
occurrences of which it consists, its degree is the degree of any such formula. Since C1 . . . Cn are all
of the same shape, we will speak of the formula (as a type) constituting the segment.

Definition 53 (Maximal segment). A maximal segment is a segment the last formula of which is
the major premise of an elimination rule.

Definition 54 (Normal form). A deduction is in normal form iff it contains neither maximal formulas
nor maximal segments.

Definition 55 (Rank of Deductions). The rank of a deduction D is the pair 〈d, l〉, where d is the
highest degree of a maximal formula or a maximal segment in D or 0 if there is none, and l is the
sum of the sum of the lengths of maximal segments of the highest degree and the number of maximal
formulas of the highest degree in D. 〈d, l〉 < 〈d′, l′〉 iff either (i) d < d′ or (ii) d = d and l < l′.

We begin our proof with an example of simplicity conversions which can remove applications of
rules with vacuous discharge above arbitrary premises. Since these conversions are rather obvious,
we give just one example.

D1

}( ~A)

D†2

A†i

D‡3
B‡

R}
(
〈t, f〉0

)
B

99K D‡3
B‡

† for each i ∈ t, ‡ for each j ∈ f.

In what follows, we suppose that if, after the application of a reduction procedure, applications
of rules with vacuous discharge above arbitrary premises are obtained, then simplicity conversions
are immediately applied.

Also, we would like to cover here the case when a maximal segment is generated by the rule
R}
(
〈t, f〉0

)
such that f = ∅ (the second clause of Definition 51).

D1

}( ~A)

D†2

A†iR}
(
〈t, ∅〉0

)
}( ~B)

D‡3

B‡iR}
(
〈t′, ∅〉0

)
C

99K
D1

}( ~A)

D†2

A†iR}
(
〈t, ∅〉0

)
C

† for each i ∈ t, ‡ for each i ∈ t′.

Case 1. The maximal formula}( ~A) produced by applications of the rulesR}
(
〈t, f〉0

)
andR}

(
〈t′, f′〉1

)
which we denote by <1 and <2, respectively.

[}( ~A)]a
D†1

A†i

[A∗j ]
b

D∗2
B

<b
1 B

H
C

D§3

A§i′

[A?
j′ ]

c

D?
4

C
<a,c

2 C
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†for each i ∈ t, ∗for each j ∈ f; §for each i′ ∈ t′, ?for each j′ ∈ f′.

Let us recall that all the formulas Ai, Aj, Ai′ , Aj′ , are subformulas of }( ~A) = }(A1, . . . , An). We
need to have more details about the other rules which are present in the system. Let us observe that
this case can be reformulated in the following way.

[}( ~A)]a X1 . . . Xn<b
1 B

H
C Y1 . . . Yn<a,c

2 C

where X1, . . . , Xn and Y1, . . . , Yn are abbreviations for the following derivations, for any t, u ∈
{1, . . . , n}.

Xt =



[At]
b

D2

B
iff t ∈ f;

D1

At
iff t ∈ t;

Yu =



[Au]c

D4

C
iff u ∈ f′;

D3

Au
iff u ∈ t′.

As follows from these equalities and soundness of our natural deduction systems, there is l ∈
{1, . . . , n} such that Xl 6= Yl.14 Then the following combinations are possible (we present them in
the form of ordered pairs 〈Xl, Yl〉):

C1 =

〈 [Al]
b

D2

B
,
D3

Al

〉
C2 =

〈
D1

Al
,

[Al]
c

D4

C

〉

Let us consider the case C1.

[}( ~A)]a X1 . . . Xl−1

[Al]
b

D2

B Xl+1 . . . Xn<b
1 B

H
C Y1 . . . Yl−1

D3

Al Yl+1 . . . Yn<a,c
2 C

Then we can introduce the following reduction procedures:

D3

Al

D2

B
H
C

D3

Al

D2

B
H
C Y1 . . . Yl−1

D3

Al Yl+1 . . . Yn<a,c
2 C

14Otherwise t = t′, and f = f′ which implies that both f}
(
〈t, h, f〉

)
= 0 and f}

(
〈t, h, f〉

)
= 1.
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If the assumption class a contains one formula, the reduction procedure presented on the left
should be applied. If there are more than one formula in the assumption class a, then in order to be
sure that all of them are discharged we apply the rule <2 at the end, that is we use the reduction
procedure presented on the right. In what follows, in similar cases we will display only reduction
procedures with such an application of a rule at the end and do not comment it, assuming by default
that such an application is needed only if there are undischarged formulas.

The case C2 seems to be similar, but there is a principal difference, let us consider it.

[}( ~A)]a X1 . . . Xl−1

D1

Al Xl+1 . . . Xn<b
1 B

H
C Y1 . . . Yl−1

[Al]
c

D4

C Yl+1 . . . Yn<a,c
2 C

At the first glance we should use the following reduction procedures:

D1

Al

D4

C

D1

Al

D4

C Y1 . . . Yl−1

D1

Al Yl+1 . . . Yn<a,c
2 C

However, there might be a problem, if we have the following situation:

D1

Al

has the form
[D]e

D′1
Al

and the assumption class e is discharged in H. According to these reductions, we do not have H
anymore, thus we cannot discard e. Let us illustrate such a troublesome situation by an example
from [103, p. 117]. The rules for negation used in [103] are just the same as the ones produced by
Segerberg’s method. Let us have a natural deduction with the rules (EM) and (EFQ) as well as the
rule corresponding to the entry f◦(0, 0) = 0 for some connective ◦ (it can be ∨, as in the example
from [103]).

[A]3

E1

C

H1

D ∨ E

[¬A]4

[D]1

E2

A
(EFQ)

B
H2

C

[E]2

H3

C1,2
C3,4

C

[D]1

E2

[A]

E1

C

If we transform the deduction displayed on the left according to the procedure displayed on the
right, then we can’t discharge assumption class 1. Thus, we need to have a different reduction
procedure:

H1

D ∨ E

[D]1

E2

[A]

E1

C

[E]2

H3

C1,2
C
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Coming back to our case, we can introduce the following reduction procedure:

D1

Al

D4

C
H∗

C Y1 . . . Yl−1

D1

Al Yl+1 . . . Yn<a,c
2 C

where H∗ is defined as follows (for the case of the rule with one or two arbitrary premisses, it can
be easily generalised to the case of the rules with n arbitrary premisses):

“Let ρ1 . . . ρm be the sequence of applications of rules in H that discharge assumptions in
D1 from top to bottom. Let ρ∗1 be an application of the same rule as ρ1, with its major,
minor and specific premises concluded as in ρ1 and its arbitrary premises and conclusion
replaced by C. If ρ∗1 has only one arbitrary premise, conclude it with the deduction
ending in the upper C in the schematic representation of the reduction procedure. <...>
If ρ∗1 has two arbitrary premises, then one is concluded as described previously, and to
conclude the other, observe that in that case H∗ contains a subdeduction of C from the
conclusion E of ρ1: append it to the deduction concluding the other arbitrary premise
of ρ1 to conclude the other arbitrary premise of ρ∗1, deleting redundant applications of
rules (i.e., those discharging assumptions that do not stand above that arbitrary premise
of ρ1). Continue in the same way with ρ2 until you reach ρm.” [103, p. 116, the notation
adjusted]

In what follows, we call such a construction of H∗ ρ-reduction.

Case 2. The maximal segment with the formula}1( ~B) and the applications of the rules R}2

(
〈t, f〉1

)
and R}1

(
〈t′, f′〉0

)
which we denote by <1 and <2, respectively.

[}2( ~A)]a

D1

}1( ~B)

D†2

A†j

[A∗k]b

D∗3

}1( ~B)
<a,b

1
}1( ~B)

D§4

B§j′

[B?
k′ ]

c

D?
5

C
<c

2 C

†for each i ∈ t, ∗for each j ∈ f; §for each i′ ∈ t′, ?for each j′ ∈ f′.

The permutative reduction procedure is as follows.

[}2( ~A)]a

D1

}1( ~B)

D§4

B§j′

[B?
k′ ]

c

D?
5

C
<c

2 C

D†2

A†j

[A∗k]b

D∗3

}1( ~B)

D§4

B§j′

[B?
k′ ]

c

D?
5

C
<c

2 C
<a,b

1 C

†for each i ∈ t, ∗for each j ∈ f; §for each i′ ∈ t′, ?for each j′ ∈ f′.

Notice that if C is also on a maximal segment, the procedure increases its length by one. But
that can be handled by choosing a suitable maximal segment, i.e., ensuring that the one which have
been shortened by the procedure, consists of formulas of a higher degree than C.
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Case 3. The maximal segment with the formula}1( ~B) and the applications of the rules R}2

(
〈t, f〉0

)
and R}1

(
〈t′, f′〉0

)
(we use for them the abbreviations <1 and <2, respectively).

D1

}2( ~A)

D†2

A†j

[A∗k]b

D∗3

}1( ~B)
<b

1
}1( ~B)

D§4

B§j′

[B?
k′ ]

c

D?
5

C
<c

2 C

†for each i ∈ t, ∗for each j ∈ f; §for each i′ ∈ t′, ?for each j′ ∈ f′.

The permutative reduction procedure is as follows.

D1

}2( ~A)

D§4

B§j′

[B?
k′ ]

c

D?
5

C
<c

2 C

D†2

A†j

[A∗k]b

D∗3

}1( ~B)

D§4

B§j′

[B?
k′ ]

c

D?
5

C
<c

2 C
<b

1 C

†for each i ∈ t, ∗for each j ∈ f; §for each i′ ∈ t′, ?for each j′ ∈ f′.

Theorem 56. Any deduction in CPL can be converted into a deduction in normal form.

Proof. By induction over the rank of deductions. The structure of the proof is as follows: first we
eliminate all maximal segments, then we eliminate all maximal formulas. Following Prawitz [161, p.
50], we require “to pick a maximal segment σ of highest degree such that (i) no maximal segment of
highest degree stands above σ; (ii) no maximal segment of highest degree stands above or contains
a formula side-connected with the last formula of σ.” We have a similar requirement for maximal
formulas15: pick a maximal formula F of highest degree such that (i) no maximal formula of highest
degree stands above F ; (ii) no maximal formula of highest degree stands above or contains a formula
side-connected with F .

Corollary 57. If Γ `CPL A, then there is a deduction in normal form with an occurrence of A as
the conclusion and occurrences of the formulas in Γ as the undischarged assumptions.

Theorem 58. If D is a deduction in normal form, then all major premises of elimination rules are
(discharged or undischarged) assumptions of D.

Proof. By the form of deductions in normal form, as a result of the permutative reduction procedures.

Let us adopt [104, Definition 9] for our case.

Definition 59 (Branch). A branch in a deduction is a sequence of formula occurrences D1 . . . Dh

such that D1 is an assumption of the deduction that is neither discharged by an elimination rule
nor the major assumption discharged by an introduction rule, Dh is either the conclusion of the
deduction or the minor premise of one of elimination rules, and for each g < h: if Dg is the major
premise of an elimination rule, Dg+1 is an assumption discharged by it; if Dg is the specific premise of
an introduction rule, Dg+1 is a major assumption discharged by it; and if Dg is an arbitrary premise
(of an introduction or an elimination rule rule), Dg+1 is the conclusion of the rule.

15According to Prawitz, a maximal formula is a maximal segment of the length 1, but since it is not the case in our
terminology, we have to rephrase Prawitz’s requirement for maximal segments for the case of maximal formulas.
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Corollary 60. If any major premises of elimination rules are on a branch in a deduction in normal
form, then they precede any major assumptions discharged by introduction rules that are on the
branch.

Proof. Follows from Theorem 58.

Definition 61 (Order of Branches). A branch has order 0 if its last formula is the conclusion of
the deduction; it has order h + 1 if its last formula is the minor premise of an application of an
elimination rule, the major premise of which is on a branch of order h. A branch of order 0 is also
called a main branch in the deduction.

Definition 62 (Subformula Property). A deduction D of a conclusion C from the undischarged
assumptions A1...Ah has the subformula property iff every formula on the deduction is a subformula
either of C or of A1...Ah.

Definition 63 (Negation Subformula Property). A deduction D of a conclusion C from the undis-
charged assumptions A1...Ah has the negation subformula property iff every formula on the deduction
is a subformula or a negation of a subformula either of C or of A1...Ah.

Theorem 64. Deductions in normal forms in CPL have the subformula property.

Proof. By inspection of the rules and an induction over the order of branches.

Let us propose generalized introduction and elimination versions of Biermann and de Paiva’s
modal rules (we need them for unifying the modal case with the propositional one, which is based
on this type of the rules):

(�GI)a,b

[�A]a [B1 . . . Bm]b

D0 D1 . . .Dm D
F B1 . . . Bm A

F
(�GE)a

[A]a

D1 D2

�A F

F

(♦GI)a

[♦A]a

D1 D2

F A

F
(♦E)a

[A,B1 . . . Bm]a

D0 D1 . . .Dm E
♦A B1 . . . Bm C

C

B1, . . . , Bm are exactly the undischarged assumptions in D in (�GI) and A,B1, . . . , Bm in E in (♦E).
For S4, B1, . . . , Bm are required to be of the form �D1, . . . ,�Dm and C to be of the form ♦D. For
S5, A,B1, . . . , Bm, C are required to be modalized. As we have already said above, Biermann and
de Paiva’s rules were originally developed for intuitionistic logic, so they can be used in classical case
with some restrictions. One of them is the necessity to restrict the language: either � or ♦ can be
present in it, since it seems impossible to prove the formulas �A ↔ ¬♦¬A and ♦A ↔ ¬�¬A. In
fact, in S4 we can deal only with �, since the formulation of the rules for ♦ require the presence of
� in the language which we cannot afford to ourselves.

Let us give some examples of derivations in S4 with the use of these rules as well as some
above-mentioned rules for implication.

[�A]a [A]b
(�GE)b

A (→ I)a
�A→ A

[��A]a [�A]b [�A]c
(�GI)a,c

��A (→ I)b
�A→ ��A
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[�B]e [�(A→ B)]g [�A]f
[�(A→ B)]a [A→ B]b

(�GE)b
A→ B

[�A]c [A]d
(�GE)d

A
(MP)

B (�GI)a,c,e
�B

(→ I)f
�A→ �B (→ I)g

�(A→ B)→ (�A→ �B)

Let us give an example of derivations in S5 with the use of these rules as well as some above-
mentioned rules for implication.

[�¬�A]a [¬�A]c [¬�A]b
(�GI)a,b

�¬�A (→ I)c¬�A→ �¬�A
Theorem 65. Let L ∈ {S4�,S5�,S5♦}. For any formula A, A is valid in L iff it is provable in the
natural deduction system for L.

Proof. Soundness and completeness of the propositional part of the calculi in question follow from
Segerberg’s paper [173]. The soundness of the rules for � and ♦ is known in intuitionistic S4 and
S5 [16, 100]. Since intuitionistic S4 and S5 are sublogics of classical S4 and S5, these rules are
sound in the classical case as well. As for completeness, one needs to prove all the formulas and rules
of a Hilbert-style formulation of classical S4 and S5 by natural deduction systems. The justification
for the necessitation rule is shown by [16], the justification of axioms of S4 and S5 one may see
above (in the language with � only; one can similarly prove them in the language with ♦ only).

As for normalisation, we need to consider the following cases.
Case 1. The maximal formula of the form �A produced by the rules (�GE) and (�GI).

[�A]a

[A]b

E1

F
(�GE)b

F
E3

G
D1 . . .Dm

B1 . . . Bm

[B1 . . . Bm]c

E2

A
(�GI)a,c

G

We transform this derivation into the following one.

D1 . . .Dm

B1 . . . Bm

E2

A
E1

F
E3

G
D1 . . .Dm

B1 . . . Bm

[B1 . . . Bm]c

E2

A
(�GI)a,c

G

Case 2. The maximal formula of the form ♦A produced by the rules (♦E) and (♦GI).

[♦A]a
D1 . . .Dm

B1 . . . Bm

[A,B1 . . . Bm]b

E1

C
(♦E)b

C
E3

D
E2

A(♦GI)a
D

99K

E2 D1 . . .Dm

A B1 . . . Bm

E1

C
E3

G
E2

A(♦GI)a
G
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Case 3. The maximal segment with the formula }(~F ) produced by the rules R(〈t, f〉0) and
(�GE). <1 and <2 stand for R(〈t, f〉0) and (�GE), respectively.

D0

�A

[A]a

D1

}(~F )
<1

}(~F )

D†2

F †j

[F ∗k ]b

D∗3
G

<2 G

99K
D0

�A

[A]a

D1

}(~F )

D†2

F †j

[F ∗k ]b

D∗3
G

<2 G<1 G

†for each i ∈ t, ∗for each j ∈ f.

The cases with maximal segments produced by the rules R(〈t, f〉0) and (�GI) as well as R(〈t, f〉0)
and (♦GI) are considered similarly. Notice that the case R(〈t, f〉0) and (♦E) does not exists, since
the formula C in the conclusion of the of the rule (♦E) is either ♦D (in the case of S4) or a modalized
formula (in the case of S5), but not the formula of the form }(~F ).

Case 4. The maximal segment with the formula ♦A produced by two applications of the rule
(♦E).

E0

♦E
E1 . . .El

F1 . . . Fl

[E,F1 . . . Fl]
a

H1

♦A a

♦A
D1 . . .Dm

B1 . . . Bm

[A,B1 . . . Bm]b

H2

C
b

C

where E,F1 . . . Fl and A,B1, . . . , Bm are exactly the undischarged assumptions in H1 and H2, respec-
tively. For S4, Bi is required to be of the form �Di, Fi is required to be of the form �Hi (1 6 i 6 m),
C to be of the form ♦D. For S5, A,B1, . . . , Bm, C, E, F1 . . . Fl are required to be modalized.

We change the order of the applications of the rules as follows:

E0

♦E
E1 . . .El

F1 . . . Fl

[E,F1 . . . Fl]
a

H1

♦A
D1 . . .Dm

B1 . . . Bm

[A,B1 . . . Bm]b

H2

C
b

C a

C

where E,F1 . . . Fl and A,B1, . . . , Bm are exactly the undischarged assumptions in H1 and H2, respec-
tively. For S4, Bi is required to be of the form �Di, Fi is required to be of the form �Hi (1 6 i 6 m),
C to be of the form ♦D. For S5, A,B1, . . . , Bm, C, E, F1 . . . Fl are required to be modalized.

The cases with maximal segments produced by two applications of the rule (�GI), two applica-
tions of the rule (�GE), and two applications of the rule (♦GI) are considered similarly.

Theorem 66. Any deduction in S4 and S5 can be converted into a deduction in normal form.

Proof. By induction on the rank of deductions, using the above presented reduction, similarly to
Theorem 56.

As Biermann and de Paive [16] note, in order to establish the subformula property, some addition
reductions are needed; they call them commuting conversions. Let us present these conversions, i.e.,
their adaptation for our formulation of Biermann and de Paive’s rules. Let us consider the case of
S4, the rules for �. The rule (�GI) in S4 is as follows:
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[�A]a [�D1 . . .�Dm]b

D0 D1 . . .Dm D
F �D1 . . .�Dm A

F

As Biermann and de Paive [16] write, there is no guarantee that �D1 . . .�Dm are subformulas of
of �A or an undischarged assumption. There are two reasons for that: �Di can be a conclusion of
some general elimination rule, and �Di can be obtained as a result of an application of (�I). Since
in our case all introduction rules are in a general form, we can add to the first clause that �Di can
be the conclusion of some general introduction rule, except (�GI). Let us consider these cases.

Case 1. �Di is a conclusion of some general elimination rule or some general introduction rule,
except (�GI).

[�A]a

D0

F

D1 . . .Di−1

�D1 . . .�Di−1

D′i

D′′i
�Di

�Di

Di+1 . . .Dm

�Di+1 . . .�Dm

[�D1 . . .�Dm]b

D
A

a,b
F

We transform this deduction as follows:

D′i

[�A]a

D0

F

D1 . . .Di−1

�D1 . . .�Di−1

D′′i
�Di

Di+1 . . .Dm

�Di+1 . . .�Dm

[�D1 . . .�Dm]b

D
A

a,b
F

F

Case 2. �Di is obtained as a result of an application of (�GI).

[�A]a

D0

F

D1 . . .Di−1

�D1 . . .�Di−1

[�C]c

E0

�Di

E1 . . .Ek

�E1 . . .�Ek

[�E1 . . .�Ek]d

E
C

c,d
�Di

Di+1 . . .Dl

�Di+1 . . .�Dl

[�D1 . . .�Dl]
b

D
A

a,b
F

Then we transform the deduction as follows.

[�A]a

D0

F

D1 . . .Di−1 E1 . . .Ek Di+1 . . .Dl

�D1 . . .�Di−1�E1 . . .�Ek �Di+1 . . .�Dl

[�C]c

E0

�Di

E1 . . .Ek

�E1 . . .�Ek

[�E1 . . .�Ek]d

E
C

c,d
�Di

[�D1 . . .�Di−1] [�Di+1 . . .�Dl]

. . .
... . .

.

D
A

a,b
F

The commuting conversions for S5 are similar.

Theorem 67. • If Γ `L A, where L ∈ {S4,S5}, then there is a deduction in normal form with
an occurrence of A as the conclusion and occurrences of the formulas in Γ as the undischarged
assumptions.

• If D is a deduction in normal form, then all major premises of elimination rules are (discharged
or undischarged) assumptions of D.

• If any major premises of elimination rules are on a branch in a deduction in normal form, then
they precede any major assumptions discharged by introduction rules that are on the branch.
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• Deductions in normal forms in S4 and S5 have the subformula property.

Proof. By the induction on order of branches.

As for the natural deduction rules for non-standard modalities, we can quite easily obtain the
rules for negated modalities, using their definitions ∼A = ¬�A = ♦¬A and ∼̇A = ¬♦A = �¬A
(these rules are supposed to be used together with the rules for ¬):

(∼GI)a

[∼A]a

D1 D2

F ¬A
F

(∼E)a

[¬A,B1 . . . Bm]a

D0 D1 . . .Dm E
∼A B1 . . . Bm C

C

(∼̇GI)a,b

[∼̇A]a [B1 . . . Bm]b

D0 D1 . . .Dm E
F B1 . . . Bm ¬A

F
(∼̇GE)a

[¬A]a

D1 D2

∼̇A F

F

B1, . . . , Bm are exactly the undischarged assumptions in D and ¬A,B1, . . . , Bm in E. For S4, for
the case when ∼ is in the language, B1, . . . , Bm are required to be of the form ¬∼D1, . . . ,¬∼Dm

(it makes these formulas equivalent to �D1, . . . ,�Dm) and C to be of the form ∼D; for the case
when ∼̇ is in the language, B1, . . . , Bm are required to be of the form ∼̇D1, . . . , ∼̇Dm (it makes these
formulas equivalent to �¬D1, . . . ,�¬Dm) and C to be of the form ¬∼̇D (it makes it equivalent to
♦D). For S5-style logics, A,B1, . . . , Bm, C are required to be modalized (the formulas ∼A and ∼̇A
are treated as modalized).

Theorem 68. Let L ∈ {S4∼,S4∼̇,S5∼,S5∼̇}. For any formula A, A is valid in L iff it is provable
in the natural deduction system for L.

Proof. Follows from Theorem 65 and the definitions of ∼ and ∼̇.

The reduction procedures for ∼ and ∼̇ are similar to the above described for � and ♦. By the
methods similar to the above applied, we can obtain the following theorem.

Theorem 69. • Any deduction in S4∼, S4∼̇, S5∼ and S5∼̇ can be converted into a deduction
in normal form.

• Deductions in normal forms in S4∼, S4∼̇, S5∼ and S5∼̇ have the negation subformula property.

As for the other modalities, the situation is more difficult. Consider the modality of non-
contingency BA = �A ∨ �¬A and the modality of contingency IA = ♦A ∧ ♦¬A. Let us try
to present the elimination rules for BA. Since BA = �A ∨ �¬A, it should be an instance of the
∨ elimination rule such that its subderivations are instances of the � elimination rule. So we get
something like this:

D1

BA
[�A]c

[A]a

D2

B
a

B

[�¬A]d

[¬A]b

D3

B
b

Bc,d
B

or like this, if we recall that BA = A ∧�A:

D1

BA
[A]c [BA]c

′

[A]a

D2

B
a

B

[¬A]d [B¬A]d
′

[¬A]b

D3

B
b

Bc,d,c′,d′

B
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Strictly speaking, we do not have the rules yet, just some deductions, but notice that the con-
clusion of these deductions can be obtained just by an application of the rule (EM) without any
reference to BA:

[A]a [¬A]b

D2 D3

B B

F

So it does not seem to be the way one can obtain the elimination rules for B. A similar problem
arises with the introduction rule for I. Since IA = ♦A∧♦¬A we need to combine the ∧ introduction
rule with the ♦ introduction one. The result is as follows:

[IA]a

D0

B

[♦A]a

D1

B
D2

A
B

[♦¬A]a

D3

B
D4

¬A
B

B

As we can see, it is just an instance of (EFQ):

D2 D4

A ¬A
B

Unfortunately, at the moment we cannot offer any solution to these problems and leave the task of
providing adequate natural deduction rules for B and I (and other non-standard modalities, except
∼̇ and ∼) for future research. However, this situation can teach us some things. First of all, despite
the fact that non-standard modalities are expressed via standard ones (and in reflexive/serial logics
vice versa), the task of the providing proof theory for them does not seem to be obvious, and one may
run into unexpected problems. Second, hypersequent and nested sequent calculi frameworks seem to
be more convenient and suitable for studying these modalities than ordinary sequent calculi (recall
Zolin’s [200, 201] problems with cut elimination for sequent calculi for non-contingency logics, even
for the logics that enjoy cut elimination in the language with � or ♦) and natural deduction systems
(recall our problems). Third, it might be the case that in order to provide a natural deduction
formulation of non-standard modalities, one might need some generalisation of a natural deduction
system similar to the generalisation of ordinary sequent calculi by hypersequent and nested sequent
calculi. This could be a starting point for fruitful further research in the area of natural deduction
systems.



Chapter 3

Proof systems for selected many-valued
logics

3.1 Preface

Correspondence analysis is a uniform method of constructing proof systems for many-valued logics.1
One of its applications is a general production of natural deduction systems for three-valued logics:
having negation as a basic connective, one may obtain in one go rules for any n-ary three-valued
connective. The aim of this section is to uniformly prove normalisation for all tabular n-ary exten-
sions of the negation fragments of three-valued logics with  Lukasiewicz’s, Heyting’s, and Bochvar’s
negations.

The roots of the method of correspondence analysis go back to Segerberg’s paper [173]. This
method is based on the 1-1 correspondence between inference rules and truth table entries. It
generates mainly natural deduction systems (but not only them; see [112, 113, 97] where it was
used to produce sequent calculi and the so-called calculus of Socratic proofs) in a uniform way for
a plenty of truth-functional finitely-valued logics per saltum. Segerberg himself presented natural
deduction systems for all Boolean n-ary connectives. Several decades later, independently from
Segerberg the same idea was rediscovered by Kooi and Tamminga [96] (the term correspondence
analysis is theirs): they introduced a natural deduction system for the logic of paradox LP [1, 162]
itself and, using the above-mentioned 1-1 correspondence between rules and entries, formulated
natural deduction systems for all truth-functional extensions of LP by unary and binary logical
connectives. After that, Tamminga [189] obtained a similar result for strong Kleene logic K3 [95].
This 1-1 correspondence was supplemented in [151] where in some cases two rules of an inference
correspond to one truth-table entry: it allowed to spread the method for the case of Belnap-Dunn’s
[13, 14, 34] four-valued logic FDE in [151] and generalise Kooi and Tamminga’s [96, 189] results in
[145] for a wider class of three-valued logics, including Heyting-Gödel’s logic G3 [74, 67] and its dual
DG3 [142]. Correspondence analysis was also used for formalisations of four-valued logics of rational
agents [146], for syntactical investigation [153] of Tomova’s natural logics [190], for the study of proof-
theoretic, functional, and erotetic (i.e., pertaining to the logic of questions) aspects of Boolean binary
connectives [112, 113, 152]. The papers [149, 150, 151] contain automated proof-searching procedures
for some of the calculi obtained by correspondence analysis. Finally, let us mention two most recent
papers on correspondence analysis: one was written by Kooi and Tamminga [97] and is devoted to
the formalisation of Belnap-Dunn-style logics via sequent calculi (in contrast to [151] where natural
deduction systems were used); another by Petrukhin and Shangin [154] which is devoted to natural

1This Section as well as Sections 3.2, 3.3, and 3.4 are based on the results of the unpublished joint paper by the
author and Nils Kürbis [106]. Sections 3.1, 3.2 and 3.3 are entirely written by the author; in Section 3.4, Lemmas 98
and 99 are proven by N. Kürbis, the formulations of Definitions 95, 96, and 97 are due to N. Kürbis; as for the rest of
Section 3.4, the author and N. Kürbis have contributed equally.

63
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deduction systems for a class of three-valued logics with the non-transitive consequence relation in
the style of Weir [196].

However, none of the above-mentioned papers considers the problem of normalisation. Since
correspondence analysis usually produces natural deduction systems and one of the most crucial
theorems regarding properties of this type of calculus is normalisation, it is important for the further
development of correspondence analysis to show that natural deduction systems produced by this
method enjoy normalisation.

One of the important consequences of the normalisation theorem (and shape of the rules) is
the subformula property : a deduction has it iff “any formula that occurs on it is a subformula of
either an undischarged assumption or of the conclusion.” [104, p. 14224] In the case of our logics,
because of the shape of the rules we are not able to obtain the subformula property, but we can
still reach the negation subformula property: formulas in a deduction are subformulas or negations
of subformulas of either an undischarged assumption or of the conclusion. Despite the fact that we
need to consider special negation versions of the subformula properties, our general elimination and
general introduction rules are still able to capture Dummett’s [36] notions of harmony and stability
which are important for a proof-theoretic semantics that defines the meaning of connectives via the
rules for them.

Reading the papers [96, 189, 151], one probably would be rather sceptical about the possibility of
normalised correspondence analysis, because quite often this method produces the rules of the shapes
(where ◦ is some binary connective) B∧¬B ` ((A◦B)∧¬(A◦B))∨¬A or ¬B, (A◦B)∨¬(A◦B) `
A ∨ ¬A, and so on. However, Segerberg’s original rules as well as the rules for three-valued logics
from [145] have a better shape. All of Segerberg’s rules and most of the rules from [145] are either
general elimination or general introduction rules in the terminology of Negri and von Plato [131].
And as we already know, Segerberg’s system enjoys normalisation. We take the results from [145]
as a starting point: we change some of the rules a bit (to make all of them general elimination or
general introduction ones) and present them in a uniform way for the case of n-ary connectives (in
[145], only unary and binary ones are considered). Then we prove normalisation for the resulting
natural deduction systems.

The possibility of proving normalisation for Segerberg’s systems is mentioned in [170] and is
practically established in the previous chapter of this work. In [38] his method is extended to
the case of many-valued logics with the help of labelled or marked formulas, and for the resulting
systems, normalisation is proved. However, it is not shown how these calculi and normalisation for
them can be adapted to the case of non-labelled calculi. Yet another method of constructing natural
deduction systems with the help of labelled formulas is due to Baaz, Fermüller, and Zach [10, 11].
Our natural deduction systems are purely syntactic and do not use any labelled formulas. This is an
important and principal difference between our systems and the above-mentioned ones. We should
also say that the idea of 1-1 correspondence between truth table entries and inference rules is used at
one of the stages of Avron, Ben-Naim, and Konikowska’s [8] technique of constructing sequent caluli
for many-valued logics. One may find the comparison of their strategy with correspondence analysis
in [151].

The results which we present in this section may be viewed as a generalisation of the completeness
results from [145] and as a continuation of our previous ones, presented in [105], where we proved
normalisation for several three- and four-valued logics, including LP, K3, and some of their implica-
tive extensions. However, in contrast to the current research, in [105] we considered neither a uniform
approach to constructing natural deduction systems nor a uniform approach to proving normalisation
for such systems. On the other hand, our results are an adaptation for the case of three-valued logics
of the techniques used in [104] for a formalisation of intuitionistic logic with general elimination and
general introduction rules.
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3.2 Correspondence analysis for three-valued logics

3.2.1 Semantics of the logics in question

We study three-valued logics and deal with the following truth values: 1 (true), 1/2 (intermediate
value2), and 0 (false). In one half of the logics that we consider (LP, DG3, their negation fragments,
and the extensions of their fragments by n-ary connectives), 1/2 is designated; in another half (K3,
G3, their negation fragments, and the extensions of their fragments by n-ary connectives), it is not
designated.

The logic of paradox LP was first formulated by Asenjo [1] and later actively studied, popularised,
and dubbed LP by Priest [162, 163]. Strong Kleene logic K3 arose in Kleene’s paper [95], although its
{¬,∧,∨}-fragment had earlier been introduced as the fragment of  Lukasiewicz’s logic [115]. Heyting’s
logic G3 had been first introduced by Heyting [74], but later on it was rediscovered by Gödel [67]
(the name G3 is in his honor) and Jaśkowski [86]. Dual Heyting’s logic DG3 was investigated by
Osorio and Carballido [142] (they called it G′3).

We consider two propositional languages, L ¬ and L ¬
(})m

. L ¬ has the alphabet of 〈P ,¬〉, where P
is the set of propositional variables {p, p0, p1, . . .}; so it is the language of the negation fragments of the
logics in question3. L ¬

(})m
has the alphabet 〈P ,¬,}1, . . . ,}m〉, where P is the set of propositional

variables {p, q, r, s, p1, . . .}, m > 1, }i (1 6 i 6 m) is an n-ary connective for n > 1. The sets F¬ and
F¬

(})m
of all L ¬- and L ¬

(})m
-formulas, respectively, are defined in a standard way. Let us consider

the following matrices:

A ¬L ¬H ¬B
1 0 0 0

1/2 1/2 0 1
0 1 1 1

We see here three most popular and natural4 three-valued negations: ¬L by  Lukasiewicz [115]
(also studied by Kleene [95] and Bochvar [17]), ¬H by Heyting [74], and ¬B by Bochvar [17]. LP
and K3 have ¬L, G3 has ¬H , and DG3 has ¬B. In what follows, we omit the subscripts in their
symbols since, from the context, it will be clear which logic and hence which negation we mean.
In the further exposition, we will use the following terminology: 1-logics and 2-logics. The former
logics have one designated value (K3 and G3, their negation fragments and their extensions by n-ary
connectives); the latter logics have two designated values (LP and DG3, their negation fragments
and their extensions by n-ary connectives). The entailment relation in these logics is defined as
follows (Γ stands for a finite set of formulas and A is a formula; a valuation is understood as a
mapping from the set P to {1, 1/2, 0} and is extended to the case of complex formulas via truth tables
(matrices)):

• if L is an 1-logic, then Γ |=L A iff for any valuation v, if v(B) = 1 for any B ∈ Γ, then v(A) = 1;

• if L is a 2-logic, then Γ |=L A iff for any valuation v, if v(B) 6= 0 for any B ∈ Γ, then v(A) 6= 0.

2It can be interpreted in various ways, e.g., paradoxical or both true and false (if it is designated), neither true nor
false (if it is not designated), undefined or unknown.

3These logics, LP, K3, G3, and DG3 are usually considered in the {¬,∨,∧,→}-language, although LP and K3

are quite often (and, in particular, in Kooi and Tamminga’s works [96, 189]) studied in the implicationless languages,
since their implication defined as ¬A∨B does not validate modus ponens, see [105] for a bit more detailed discussion.

4There are at least two more possibilities for defining negation in the three-valued setting: Post’s [159] negation
and its reverse [147]. But these two connectives belong to the class of circular negations, which ‘negationness’ may be
debatable, although it is not an obstacle for the consideration of natural deduction, as we will see in the later sections.
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An interesting feature of all the 2-logics in question is that all of them are paraconsistent5, while
all 1-logic are paracomplete6.

We could present here a list of possible extensions of the negation fragments of LP, K3, G3,
and DG3 by various connectives (and describe the other connectives of these logics); however, an
extensive survey of such connectives is presented in [145], so we just refer to it and move on to the
consideration of natural deduction systems.

3.2.2 The method of correspondence analysis and natural deduction sys-
tems obtained by it

Consider the subsequent rules:

(EM)a,b

[A]a [¬A]b

D1 D2

B B

B
(EM¬)a,b

[¬A]a [¬¬A]b

D1 D2

B B

B

(¬¬I)a

[¬¬A]a

D1 D2

A B

B
(¬¬E)a

[A]a

D1 D2

¬¬A B

B

(EFQ)

D1 D2

¬A A

B
(EFQ¬)

D1 D2

¬¬A ¬A
B

• The natural deduction system ND¬LP for the negative fragment of LP has the rules (EM),
(¬¬I), and (¬¬E).

• The natural deduction system ND¬DG for the negative fragment of DG3 has the rules (EM)
and (EFQ¬).

• The natural deduction system ND¬K for the negative fragment of K3 has the rules (¬¬I),
(¬¬E), and (EFQ).

• The natural deduction system ND¬G for the negative fragment of G3 has the rules (EFQ) and
(EM¬).

Definition 70 (Deduction in ND¬L). Let L ∈ {LP,K,G,DG}.

1. The formula occurrence A is a deduction in ND¬L of A from the undischarged assumption A.

2. If D1 and D2 are deductions in ND¬L, then the applications of the above-mentioned rules are
deductions of B in ND¬L from the undischarged assumptions in D1 and D2 apart from those in
the assumption classes a and b, which are discharged.

3. Nothing else is a deduction in ND¬L.

We write Γ `ND¬L A (or just Γ `L A) if there is a deduction in ND¬L of (the formula occurrence) A
from (occurrences of) some of the formulas in Γ.

5At least in Priest’s [163] sense: if for some formulas A and B, A,¬A 6|=L B, then L is a paraconsistent logic.
6We understand a paracomplete logic as the one in which for some formulas A and B, A |=L B, ¬A |=L B, while

6|=L B. If we would consider a multiple conclusion entailment relation, we could use a simplier definition by Hyde [76]:
B 6|=L A,¬A. See [145] for some other definitions.
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These systems were investigated in [145], but the double negation rules are not in the general
elimination or introduction form. One may easily derive standard, not general, versions of the double
negation rules from these ones. Now let us adopt for our case some Segerberg’s notation [173].

Notation 71. Consider the set of natural numbers s = {1, . . . , n}. By a partitioning of s we mean an
ordered triple 〈I, J,K〉 such that I ∪ J ∪K = s and I ∩ J ∩K = ∅. In what follows, we are going
to consider a partitioning of the following type: 〈t, h, f〉, where t = {i ∈ s | v(Ai) = 1, Ai ∈ F(})m},
h = {j ∈ s | v(Aj) = 1/2, Aj ∈ F(})m}, and f = {k ∈ s | v(Ak) = 0, Ak ∈ F(})m}.

And a few more notation, this time in the spirit of Kooi and Tamminga [96, 189].

Notation 72. The expression f}(x1, . . . , xn) = y, where x1, . . . , xn, y ∈ {1, 1/2, 0}, means that if
v(A1) = x1, . . . , v(An) = xn, then v(}(A1, . . . , An)) = y, for each valuation v and all formulas
A1, . . . , An. The expression f}

(
〈t, h, f〉

)
= x, where x ∈ {1, 1/2, 0}, means that if v(Ai) = 1 (for each

i ∈ t), v(Aj) = 1/2 (for each j ∈ h), and v(Ak) = 0 (for each k ∈ f), then v(}(A1, . . . , An)) = x, for
each valuation v.

Let us clarify a bit this notation and, with its help, the idea of correspondence analysis. Consider,
for example, some ternary connective �, a particular instance of our }, such that for any valuation
v, v(�(A,B,C)) = 1, if v(A) = 1/2, v(B) = 0, and v(C) = 1/2. We have f�(1/2, 0, 1/2) = 1 and
this equality is said to be an entry. We enumerate all the formulas A,B,C as follows: A1, A2, A3.
We can form a triple 〈t, h, f〉 such that 〈∅, {1, 3}, {2}〉. Thus, we have f�

(
〈∅, {1, 3}, {2}〉

)
= 1. By

looking at the number of formulas and the structure of the triple, we can understand which values
these formulas have. Such notation will help us present in a uniform way the rules that correspond
to the entry. In particular, we get a rule called R�

(
〈∅, {1, 3}, {2}〉1

)
(for 2-logics) and a rule called

R̃�
(
〈∅, {1, 3}, {2}〉1

)
(for 1-logics). Let us present them:

R�
(
〈∅, {1, 3}, {2}〉1

)a
[B]a

D1 D2 D3 D4 D5 D6

¬�(A,B,C) A ¬A C ¬C D

D

R̃�
(
〈∅, {1, 3}, {2}〉1

)a,b,c,d,e
[¬�(A,B,C)]a [A]b [¬A]c [C]d [¬C]e

D1 D2 D3 D4 D5 D6

D D D D D B

D

As we will see soon, one can prove that f�(1/2, 0, 1/2) = 1 iff R�
(
〈∅, {1, 3}, {2}〉1

)
is valid (for

2-logics); and f�(1/2, 0, 1/2) = 1 iff R̃�
(
〈∅, {1, 3}, {2}〉1

)
is valid (for 1-logics). It is called the single

entry correspondence. By the way, it is time to give the precise definition of this notion; we even give
it in a generalised form, following [145, Definition 4.1]; in the original formulation, [96, Definition
2.1] and [189, Definition 1], a single entry could be characterised by a single rule only; also, this rule
cannot have subdeductions (in our case, it is allowed).

Definition 73 (Generalized single entry correspondence). Let x1, . . . , xn, y ∈ {1, 1/2, 0} andA1, . . . , Ah,
B1, . . . , Bg, C1, . . . , Ct ∈ F}(m). Let E be a truth table (or matrix) entry of the type f}(x1, . . . , xn) =
y. Let 1 6 l 6 h and Il/Al be an inference scheme of the type B1, . . . , Bg/Al or B1, . . . , Bg, C1 `
Al, . . . , Ct ` Al/Al or C1 ` Al, . . . , Ct ` Al/Al. Then E is characterised by inference schemes
I1/A1, . . . , Ih/Ah, if

E if and only if I1 |= A1, . . . , Ik |= Ak.

Notice that all the entries of the forms f}
(
〈t, h, f〉

)
= 1 and f}

(
〈t, h, f〉

)
= 0 are characterised

by one rule, while all the entries of the form f}
(
〈t, h, f〉

)
= 1/2 are characterised by two rules. So if



68 CHAPTER 3. PROOF SYSTEMS FOR SELECTED MANY-VALUED LOGICS

our � behaves in such a way that, e.g., f�
(
〈{3}, {1}, {2}〉

)
= 1/2, that is v(�(A1, A2, A3)) = 1/2, if

v(A1) = 1/2, v(A2) = 0, and v(A3) = 1, then it is characterised by two rules: R�
(
〈{3}, {1}, {2}〉1/2

)
and R¬�

(
〈{3}, {1}, {2}〉1/2

)
(the case of 2-logics) or R̃�

(
〈{3}, {1}, {2}〉1/2

)
and R̃¬�

(
〈{3}, {1}, {2}〉1/2

)
(the case of 1-logics). Let us enlist these rules as well:

R�
(
〈{3}, {1}, {2}〉1/2

)a,b,c
[�(A,B,C)]a [¬C]b [B]c

D1 D2 D3 D4 D5

D D A ¬A D

D

R¬�
(
〈{3}, {1}, {2}〉1/2

)a,b,c
[¬�(A,B,C)]a [¬C]b [B]c

D1 D2 D3 D4 D5

D D A ¬A D

D

R̃�
(
〈{3}, {1}, {2}〉1/2

)a,b
[A]a [¬A]b

D1 D2 D3 D4 D5

�(A,B,C) ¬C D D B

D

R̃¬�
(
〈{3}, {1}, {2}〉1/2

)a,b
[A]a [¬A]b

D1 D2 D3 D4 D5

¬�(A,B,C) ¬C D D B

D

In order to characterise the formula �(A,B,C) we need to consider all possible valuations of
the formulas A,B,C; we get 3 values for 3 formulas, that is 27 combinations, and for each of them
we have one rule or two. Adding all these rules for the natural deduction system for the negation
fragment of one of the four basic logics in question, we get a sound and complete natural deduction
system for an extension of the chosen negation fragment of the chosen logic by �. Surely, after that,
we can add, in a similar way, other connectives for this system. Of course, we have a lot of rules. But
for the case of binary and unary connectives (which are the most popular in logic), we have fewer
combinations of valuations: 9 and 3, respectively. Thus, from 9 to 18 rules for a binary connective
(depending on how many times it takes the value 1/2) and from 3 to 6 rules for a unary connective.
Still, that is quite a lot of rules. But that is the price for the generality of the method, which we
have to pay. Instead of finding the rules in a handmade way for any logic individually, we get the
rules for all the logics in one go.

Now we are ready to present in a uniform way rules for an n-ary connective }.

• The rules for LP and DG3:

R}
(
〈t, h, f〉1

)a,b
[¬A†i ]a [A∗k]b

D1 D†2 D‡3 D‡4 D∗5
¬}(A1, . . . , An) B A‡j ¬A

‡
j B

B
† for each i ∈ t, ‡ for each j ∈ h, ∗ for each k ∈ f.

R}
(
〈t, h, f〉1/2

)a,b,c
[}(A1, . . . , An)]a [¬A†i ]b [A∗k]c

D1 D†2 D‡3 D‡4 D∗5
B B A‡j ¬A

‡
j B

B
† for each i ∈ t, ‡ for each j ∈ h, ∗ for each k ∈ f.
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R¬}
(
〈t, h, f〉1/2

)a,b,c
[¬}(A1, . . . , An)]a [¬A†i ]b [A∗k]c

D1 D†2 D‡3 D‡4 D∗5
B B A‡j ¬A

‡
j B

B
† for each i ∈ t, ‡ for each j ∈ h, ∗ for each k ∈ f.

R}
(
〈t, h, f〉0

)a,b
[¬A†i ]a [A∗k]b

D1 D†2 D‡3 D‡4 D∗5
}(A1, . . . , An) B A‡j ¬A

‡
j B

B
† for each i ∈ t, ‡ for each j ∈ h, ∗ for each k ∈ f.

• The rules for K3 and G3:

R̃}
(
〈t, h, f〉1

)a,b,c
[}(A1, . . . , An)]a [A‡j]

b [¬A‡j]c
D1 D†2 D‡3 D‡4 D∗5
B A†i B B ¬A∗k

B
† for each i ∈ t, ‡ for each j ∈ h, ∗ for each k ∈ f.

R̃}
(
〈t, h, f〉1/2

)a,b
[A‡j]

a [¬A‡j]b
D1 D†2 D‡3 D‡4 D∗5

}(A1, . . . , An) A†i B B ¬A∗k
B

† for each i ∈ t, ‡ for each j ∈ h, ∗ for each k ∈ f.

R̃¬}
(
〈t, h, f〉1/2

)a,b
[A‡j]

a [¬A‡j]b
D1 D†2 D‡3 D‡4 D∗5

¬}(A1, . . . , An) A†i B B ¬A∗k
B

† for each i ∈ t, ‡ for each j ∈ h, ∗ for each k ∈ f.

R̃}
(
〈t, h, f〉0

)a,b,c
[¬}(A1, . . . , An)]a [A‡j]

b [¬A‡j]c
D1 D†2 D‡3 D‡4 D∗5
B A†i B B ¬A∗k

B
† for each i ∈ t, ‡ for each j ∈ h, ∗ for each k ∈ f.

By LP
(})m
¬ , DG

(})m
3¬ , K

(})m
3¬ , and G

(})m
3¬ we denote extensions of LP¬, DG3¬, K3¬, and G3¬ by

}1, . . . ,}m. Let L ∈ {LP,DG,K,G}. Then ND¬}L is a natural deduction system for LP
(})m
¬ (resp.

DG
(})m
3¬ , K

(})m
3¬ , G

(})m
3¬ ).

Definition 74 (Deduction in ND¬}L ).

1. The formula occurrence A is a deduction in ND¬}L of A from the undischarged assumption A.

2. If D1 and D2 are deductions in ND¬}L , then the applications of the above-mentioned rules for
negations are deductions of B in ND¬L from the undischarged assumptions in D1 and D2 apart
from those in the assumption classes a and b, which are discharged.
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3. If D1, D2, D3, D4, and D5 are deductions in ND¬}L , then the applications of the above-
mentioned rules for } are deductions of B in ND¬}L from the undischarged assumptions in
D1, D2, D3, D4, and D5 apart from those in the assumption classes a, b, and c, which are
discharged.

4. Nothing else is a deduction in ND¬}L .

We write Γ `ND¬}L A (or just Γ `L A) if there is a deduction in ND¬}L of (the formula occurrence) A
from (occurrences of) some of the formulas in Γ.

Let us present an adaptation of [104, Definition 3] for our case.

Definition 75 (Terminology for Premises and Discharged Assumptions).

1. In applications of the general elimination rules, formula occurrences taking the places of ¬¬A
(rules (¬¬E) and (EFQ¬)), ¬A (the rule (EFQ)),}( ~A) (rulesR}

(
〈t, h, f〉0

)
and R̃}

(
〈t, h, f〉1/2

)
),

and ¬}( ~A) (rules R}
(
〈t, h, f〉1

)
and R̃¬}

(
〈t, h, f〉1/2

)
) to the very left above the line are the

major premises ; formula occurrences taking the places of B at the end of subdeductions are
the arbitrary premises ; formula occurrences taking the place of A in an application of (EFQ),
¬A in an application of (EFQ¬), Aj,¬Aj in applications of R}

(
〈t, h, f〉0

)
and R}

(
〈t, h, f〉1

)
,

Ai,¬Ak in applications of R̃}
(
〈t, h, f〉1/2

)
and R̃¬}

(
〈t, h, f〉1/2

)
are the minor premises.

2. In applications of the general introduction rules, formula occurrences taking the place of A in
an application of (¬¬I), Aj,¬Aj in applications of R}

(
〈t, h, f〉1/2

)
and R¬}

(
〈t, h, f〉1/2

)
, Ai,¬Ak

in applications of R̃}
(
〈t, h, f〉1

)
and R̃}

(
〈t, h, f〉0

)
are the specific premises ; formula occurrences

taking the places of B at the end of subdeductions are the arbitrary premises ; formula occur-
rences taking the places of the discharged assumptions ¬A (the rule (EM)), ¬¬A (rules (EM¬),
(¬¬I)), }( ~A) (rules R}

(
〈t, h, f〉1/2

)
and R̃}

(
〈t, h, f〉1

)
), and ¬}( ~A) (rules R̃¬}

(
〈t, h, f〉1/2

)
and

R}
(
〈t, h, f〉0

)
) are the major assumptions discharged by applications of the respective rules; for-

mula occurrences taking the place of the discharged assumptions A in (EM), ¬A in (EM¬), ¬Ai

and Ak in R}
(
〈t, h, f〉1/2

)
and R¬}

(
〈t, h, f〉1/2

)
, Aj and ¬Aj in R̃}

(
〈t, h, f〉1

)
and R̃}

(
〈t, h, f〉0

)
are the minor assumptions discharged by applications of the respective rules.

Theorem 76. Let L be LP
(})m
¬ or DG

(})m
3¬ . Then:

(1) f}
(
〈t, h, f〉

)
= 0 iff R}

(
〈t, h, f〉0

)
is sound in L.

(2) f}
(
〈t, h, f〉

)
= 1/2 iff both R}

(
〈t, h, f〉1/2

)
and R¬}

(
〈t, h, f〉1/2

)
are sound in L.

(3) f}
(
〈t, h, f〉

)
= 1 iff R}

(
〈t, h, f〉1

)
is sound in L.

Proof. (1) By contraposition. Suppose that R}
(
〈t, h, f〉0

)
is not sound in L. Then there is a valuation

v such that v(}(A1, . . . , An)) 6= 0, v(¬Ai) 6= 0, for each i ∈ t, implies v(B) 6= 0, v(Aj) 6= 0 and
v(¬Aj) 6= 0, for each j ∈ h, v(Ak) 6= 0, for each k ∈ f, implies v(B) 6= 0, while v(B) = 0. Then
v(¬Ai) = 0, for each i ∈ t, and v(Ak) = 0, for each k ∈ f. Hence, v(Ai) = 1, for each i ∈ t, and
v(Aj) = 1/2, for each j ∈ h. But then f}

(
〈t, h, f〉

)
6= 0.

Suppose that f}
(
〈t, h, f〉

)
6= 0. Then there is a valuation v such that for some formulas A1, . . . , An,

it holds that v(}(A1, . . . , An)) 6= 0 and A1, . . . , An have the 〈t, h, f〉-appropriate values. Let B be
such a formula that v(B) = 0. Then, since v(B) = 0, we get the following implications: v(Ak) = 0,
for each k ∈ f, implies v(B) = 0; v(¬Ai) = 0, for each i ∈ t, implies v(B) = 0 (since v(Ai) = 1, for
each i ∈ t, implies v(¬Ai) = 0, for each i ∈ t). Thus, the subdeduction of B from the set of formulas
{αk | k ∈ f} and the subdeduction of B from the set of formulas {¬αi | i ∈ t} are semantically
correct. Also, we know that v(Aj) = 1/2 and v(¬Aj) 6= 0, for each j ∈ h. Thus, all the subdeductions
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of the rule R}
(
〈t, h, f〉0

)
are semantically correct, but not its conclusion. Hence, R}

(
〈t, h, f〉0

)
is not

sound in L.
(2) By contraposition. Suppose R}

(
〈t, h, f〉1/2

)
or R¬}

(
〈t, h, f〉1/2

)
are not sound in L. Suppose

R}
(
〈t, h, f〉1/2

)
is not sound in L. Then there is a valuation v such that v(}(A1, . . . , An)) 6= 0 implies

v(B) 6= 0, v(¬Ai) 6= 0, for each i ∈ t, implies v(B) 6= 0, v(Aj) 6= 0 and v(¬Aj) 6= 0, for each
j ∈ h, v(Ak) 6= 0, for each k ∈ f, implies v(B) 6= 0, while v(B) = 0. Then v(}(A1, . . . , An)) = 0,
v(Ai) = 1, for each i ∈ t, v(Aj) = 1/2, for each j ∈ h, and v(Ak) = 0, for each k ∈ f. Hence,
f}
(
〈t, h, f〉

)
6= 1/2. Assume that R¬}

(
〈t, h, f〉1/2

)
is not sound in L. Then there is a valuation v such

that v(¬}(A1, . . . , An)) 6= 0 implies v(B) 6= 0, v(¬Ai) 6= 0, for each i ∈ t, implies v(B) 6= 0,
v(Aj) 6= 0 and v(¬Aj) 6= 0, for each j ∈ h, v(Ak) 6= 0, for each k ∈ f, implies v(B) 6= 0, while
v(B) = 0. Then v(}(A1, . . . , An)) = 1, v(Ai) = 1, for each i ∈ t, v(Aj) = 1/2, for each j ∈ h, and
v(Ak) = 0, for each k ∈ f. Hence, f}

(
〈t, h, f〉

)
6= 1/2.

Suppose f}
(
〈t, h, f〉

)
6= 1/2. Thus, there is a valuation v such that for some formulas A1, . . . , An,

it holds that v(}(A1, . . . , An)) 6= 1/2, v(¬Ai) = 0, for each i ∈ t, v(Aj) = 1/2 and v(¬Aj) 6= 0, for
each j ∈ h, v(Ak) = 0, for each k ∈ f. Let B such a formula that v(B) = 0. Then, since v(B) = 0,
we get the following implications: v(Ak) = 0, for each k ∈ f, implies v(B) = 0; v(¬Ai) = 0, for
each i ∈ t, implies v(B) = 0. Thus, the subdeduction of B from the set of formulas {αk | k ∈ f}
and the subdeduction of B from the set of formulas {¬αi | i ∈ t} are semantically correct. Since
v(}(A1, . . . , An)) 6= 1/2, either v(}(A1, . . . , An)) = 0 or v(¬}(A1, . . . , An)) = 0. Since v(B) = 0,
either v(}(A1, . . . , An)) = 0 implies v(B) = 0, or v(¬}(A1, . . . , An)) = 0 implies v(B) = 0. Hence,
either the subdeduction of B from }(A1, . . . , An) is semantically correct, or the subdeduction of
B from ¬}(A1, . . . , An) is semantically correct. Therefore, either all the subdeductions of the rule
R}
(
〈t, h, f〉1/2

)
are semantically correct, but not its conclusion, or all the subdeductions of the rule

R¬}
(
〈t, h, f〉1/2

)
are semantically correct, but not its conclusion. Thus, either R}

(
〈t, h, f〉1/2

)
is not

sound in L or R¬}
(
〈t, h, f〉1/2

)
is not sound in L.

(3) Similarly to (1).

To be sure, it cannot be the case that both f}
(
〈t, h, f〉

)
= 0 and f}

(
〈t, h, f〉

)
= 1/2. Although,

of course, f}
(
〈t, h, f〉

)
= 0 and f}

(
〈t′, h′, f′〉

)
= 1/2 can be the case for two different tuples. Thus,

the rules R}
(
〈t, h, f〉1

)
, R}

(
〈t, h, f〉1/2

)
, and R¬}

(
〈t, h, f〉1/2

)
cannot be in a natural deduction system

at the same time, otherwise we lose soundness. However, it can be the case that R}
(
〈t, h, f〉1

)
and

R}
(
〈t, h, f〉1/2

)
are present in a system at the same time without lose of soundness and under the

condition that f}
(
〈t, h, f〉

)
= 1. Additionally, if f}

(
〈t, h, f〉

)
= 0, R}

(
〈t, h, f〉0

)
and R¬}

(
〈t, h, f〉1/2

)
can be present in a system at the same time as well. From the point of view of completeness, in
these two situations the rules dealing with 1/2 are superfluous, but they will be extremely helpful for
the normalisation theorem. So when we prove normalisation for LP

(})m
¬ , we will presuppose that

if R}
(
〈t, h, f〉1

)
is in a system, then R}

(
〈t, h, f〉1/2

)
is as well (but not R¬}

(
〈t, h, f〉1/2

)
, we do not

want to lose soundness), and if R}
(
〈t, h, f〉0

)
is in a system, then R¬}

(
〈t, h, f〉1/2

)
is as well (but not

R}
(
〈t, h, f〉1/2

)
, of course).

Theorem 77. (1) If f}
(
〈t, h, f〉

)
= 0, then R¬}

(
〈t, h, f〉1/2

)
is sound in LP

(})m
¬ .

(2) If f}
(
〈t, h, f〉

)
= 1, then R}

(
〈t, h, f〉1/2

)
is sound in LP

(})m
¬ .

Proof. (1) Suppose that f}
(
〈t, h, f〉

)
= 0 and R¬}

(
〈t, h, f〉1/2

)
is not sound in LP

(})m
¬ . Then there is a

valuation v such that v(¬}(A1, . . . , An)) 6= 0 implies v(B) 6= 0, v(¬Ai) 6= 0, for each i ∈ t, implies
v(B) 6= 0, v(Aj) 6= 0 and v(¬Aj) 6= 0, for each j ∈ h, v(Ak) 6= 0, for each k ∈ f, implies v(B) 6= 0,
while v(B) = 0. Then v(}(A1, . . . , An)) = 1, v(¬Ai) = 1, v(Aj) = 1/2, and v(Ak) = 0. But then
f}
(
〈t, h, f〉

)
6= 0. Contradiction. Hence, R¬}

(
〈t, h, f〉1/2

)
is sound in LP

(})m
¬ .

(2) Similarly to (1).

Proposition 78. R}
(
〈t, h, f〉1/2

)
is derivable in ND¬(})m

LP via R}
(
〈t, h, f〉1

)
and (EM).
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Proof.
[}( ~A)]1

D1

B

[¬}( ~A)]2

[¬A†i ]3

D2

B

D3

A‡j

D4

¬A‡j

[A∗k]4

D5

B
R}
(
〈t, h, f〉1

)3,4
B(EM)1,2

B
† for each i ∈ t, ‡ for each j ∈ h, ∗ for each k ∈ f.

Notice that this proof is not normal, ¬}( ~A) is a maximal formula here, that is why although
R}
(
〈t, h, f〉1/2

)
is derivable, we need to postulate it as a primitive rule to prove normalisation.

Proposition 79. R¬}
(
〈t, h, f〉1/2

)
is derivable in ND¬(})m

LP via R}
(
〈t, h, f〉0

)
and (EM).

Proof. [}( ~A)]1

[¬A†i ]2

D1

B

D2

A‡j

D3

¬A‡j

[A∗k]3

D4

B
R}
(
〈t, h, f〉0

)2,3
B

[¬}( ~A)]4

D5

B(EM)1,4
B

† for each i ∈ t, ‡ for each j ∈ h, ∗ for each k ∈ f.

Theorem 80. Let L be K
(})m
3¬ or G

(})m
3¬ . Then:

(1) f}
(
〈t, h, f〉

)
= 0 iff R̃}

(
〈t, h, f〉0

)
is sound in L.

(2) f}
(
〈t, h, f〉

)
= 1/2 iff both R̃}

(
〈t, h, f〉1/2

)
and R̃¬}

(
〈t, h, f〉1/2

)
are sound in L.

(3) f}
(
〈t, h, f〉

)
= 1 iff R̃}

(
〈t, h, f〉1

)
is sound in L.

Proof. Similarly to Theorem 76.

In the case of K
(})m
3¬ and G

(})m
3¬ , to prove normalisation, we do not need to postulate as primitive

any derivable rules.

3.3 Soundness and completeness
Lemma 81. All the rules of ND¬LP, ND¬DG, ND¬K, and ND¬G are sound.

Proof. As an example, consider ND¬LP and the rule (EM). Suppose that A |=LP B and ¬A |=LP B.
Then for any valuation v, it holds that if v(A) 6= 0, then v(B) 6= 0 as well as if v(¬A) 6= 0, then
v(B) 6= 0. Let v(A) 6= 0. Then v(B) 6= 0. Let v(A) = 0. Then v(¬A) = 1 and hence v(B) 6= 0.
Therefore, |=LP B.

Theorem 82 (Soundness). Let L ∈ {LP(})m
¬ ,DG

(})m
3¬ ,K

(})m
3¬ ,G

(})m
3¬ }. Let Γ ⊆ F¬

(})m
and A ∈

F¬
(})m

. Then Γ `L A implies Γ |=L A.

Proof. By induction on the length of the derivation. Use Theorems 76 and 80 as well as Lemma
81.

Our completeness proof is a generalization of the proofs from [96, 189, 145].

Definition 83. Let Γ ⊆ F¬
(})m

and A,B ∈ F¬
(})m

. Then Γ is said to be an LP(})m
¬ -theory iff the

following conditions are fulfilled:

• (ΓN) Γ 6= F(})m (non-triviality);

• (ΓCl) Γ ` A implies A ∈ Γ (closure under `);
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• (ΓM) A ∈ Γ or ¬A ∈ Γ (maximality);

• (Γ0
LP) if f}(〈t, h, f〉) = 0, then }(A1, . . . , An) ∈ Γ and for each j ∈ h, Aj,¬Aj ∈ Γ, then for

some i ∈ t, ¬Ai ∈ Γ or for some k ∈ f, Ak ∈ Γ;

• (Γ1/2
LP) if f}(〈t, h, f〉) = 1/2, then

– for each j ∈ h, Aj,¬Aj ∈ Γ implies }(A1, . . . , An) ∈ Γ, or for some i ∈ t, ¬Ai ∈ Γ, or for
some k ∈ f, Ak ∈ Γ,

– for each j ∈ h, Aj,¬Aj ∈ Γ implies ¬}(A1, . . . , An) ∈ Γ, or for some i ∈ t, ¬Ai ∈ Γ, or
for some k ∈ f, Ak ∈ Γ;

• (Γ1
LP) if f}(〈t, h, f〉) = 1, then ¬}(A1, . . . , An) ∈ Γ and for each j ∈ h, Aj,¬Aj ∈ Γ, then for

some i ∈ t, ¬Ai ∈ Γ or for some k ∈ f, Ak ∈ Γ.

Definition 84. An LP(})m
¬ -theory Γ is said to be an DG

(})m
3¬ -theory iff it satisfies the following

condition, for each A ∈ F¬
(})m

:

• (ΓRC) ¬A 6∈ Γ or ¬¬A 6∈ Γ (restricted consistency).

Definition 85. Let Γ ⊆ F¬
(})m

and A,B ∈ F¬
(})m

. Then Γ is said to be an K
(})m
3¬ -theory iff the

conditions (ΓN) and (ΓCl) are met as well as the following ones:

• (Γ0
K3
) if f}(〈t, h, f〉) = 0, then for each i ∈ t, Ai ∈ Γ, and for each k ∈ f, ¬Ak ∈ Γ implies

¬}(A1, . . . , An) ∈ Γ or for some j ∈ h, Aj ∈ Γ or ¬Aj ∈ Γ;

• (Γ1/2
K3
) if f}(〈t, h, f〉) = 1/2, then

– }(A1, . . . , An) ∈ Γ, for each i ∈ t, Ai ∈ Γ, and for each k ∈ f, ¬Ak ∈ Γ implies for some
j ∈ h, Aj ∈ Γ or ¬Aj ∈ Γ,

– ¬}(A1, . . . , An) ∈ Γ, for each i ∈ t, Ai ∈ Γ, and for each k ∈ f, ¬Ak ∈ Γ implies for some
j ∈ h, Aj ∈ Γ or ¬Aj ∈ Γ;

• (Γ1
K3
) if f}(〈t, h, f〉) = 1, then for each i ∈ t, Ai ∈ Γ, and for each k ∈ f, ¬Ak ∈ Γ implies

}(A1, . . . , An) ∈ Γ or for some j ∈ h, Aj ∈ Γ or ¬Aj ∈ Γ.

Lemma 86. Every K
(})m
3¬ -theory Γ satisfies the following condition, for each A ∈ F¬

(})m
:

• (ΓC) A 6∈ Γ or ¬A 6∈ Γ (consistency).

Proof. Suppose that (ΓC) does not hold, i.e., there is A ∈ F(})m such that A ∈ Γ and ¬A ∈ Γ. Then
by the rule (EFQ), B ∈ Γ, i.e., Γ = F(})m . However, according to (ΓN), Γ 6= F(})m . Contradiction.
Hence, (ΓC) holds.

Definition 87. An K
(})m
3¬ -theory Γ is said to be an G

(})m
3¬ -theory iff it satisfies the following condition,

for each A ∈ F¬
(})m

:

• (ΓRM) ¬A ∈ Γ or ¬¬A ∈ Γ (restricted maximality).

Definition 88. Let A ∈ F¬
(})m

and Γ be an LP(})m
¬ - or an DG

(})m
3¬ -theory. Then e(A,Γ) is an

interpretation function of A in Γ which is defined as follows:

e(A,Γ) =


1 iff A ∈ Γ,¬A 6∈ Γ;

1/2 iff A,¬A ∈ Γ;
0 iff A 6∈ Γ,¬A ∈ Γ.
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Let Γ be an K
(})m
3¬ - or an G

(})m
3¬ -theory. Then e(A,Γ) is defined as follows:

e(A,Γ) =


1 iff A ∈ Γ,¬A 6∈ Γ;

1/2 iff A,¬A 6∈ Γ;
0 iff A 6∈ Γ,¬A ∈ Γ.

Lemma 89. Let L ∈ {LP(})m
¬ ,DG

(})m
3¬ ,K

(})m
3¬ ,G

(})m
3¬ }. Let Γ be an L-theory and A ∈ F¬

(})m
. Then:

(1) f¬(e(A,Γ)) = e(¬A,Γ);

(2) f}(e(A1,Γ), . . . , e(An,Γ)) = e(}(A1, . . . , An),Γ).

Proof. The statement (1) is proven in [145]. Let us consider the statement (2).
L ∈ {LP(})m

¬ ,DG
(})m
3¬ }. Let 〈t, h, f〉 be such that e(Ai,Γ) = 1, for each i ∈ t, e(Aj,Γ) = 1/2, for

each j ∈ h, and e(Ak,Γ) = 0, for each k ∈ f. Hence, Ai ∈ Γ, ¬Ai 6∈ Γ, Aj ∈ Γ, ¬Aj ∈ Γ, Ak 6∈ Γ,
¬Ak ∈ Γ, for each i ∈ t, j ∈ h, and k ∈ f.

Suppose that f}(〈t, h, f〉) = 0. Suppose that }(A1, . . . , An) ∈ Γ. By (Γ0
LP), for each i ∈ t,

j ∈ h, and k ∈ f, it holds that }(A1, . . . , An), Aj,¬Aj ∈ Γ implies ¬Ai ∈ Γ or Ak ∈ Γ. Since
}(A1, . . . , An), Aj,¬Aj ∈ Γ, we have ¬Ai ∈ Γ or Ak ∈ Γ. Contradiction. Thus, }(A1, . . . , An) 6∈ Γ.
By (ΓM), ¬}(A1, . . . , An) ∈ Γ. Therefore, for each i ∈ t, j ∈ h, and k ∈ f, f}(e(A1,Γ), . . . , e(An,Γ)) =
f}(〈t, h, f〉) = f}(〈e(Ai,Γ), e(Aj,Γ), e(Ak,Γ)〉) = 0 = f}(〈1, 1/2, 0〉) = e(}(A1, . . . , An),Γ).

Suppose that f}(〈t, h, f〉) = 1/2. By (Γ1/2
LP), for each i ∈ t, j ∈ h, and k ∈ f, it holds that

Aj,¬Aj ∈ Γ implies }(A1, . . . , An) ∈ Γ or ¬Ai ∈ Γ or Ak ∈ Γ; as well as Aj,¬Aj ∈ Γ implies
¬}(A1, . . . , An) ∈ Γ or ¬Ai ∈ Γ or Ak ∈ Γ. Since ¬Ai 6∈ Γ and Ak 6∈ Γ, }(A1, . . . , An) ∈ Γ and
¬}(A1, . . . , An) ∈ Γ. Therefore, f}(e(A1,Γ), . . . , e(An,Γ)) = 1/2 = e(}(A1, . . . , An),Γ).

Suppose that f}(〈t, h, f〉) = 1. Suppose that ¬}(A1, . . . , An) ∈ Γ. By (Γ1
LP), for each i ∈ t, j ∈ h,

and k ∈ f, it holds that ¬}(A1, . . . , An), Aj,¬Aj ∈ Γ implies ¬Ai ∈ Γ or Ak ∈ Γ. Contradiction.
Hence, ¬}(A1, . . . , An) 6∈ Γ. By (ΓM), }(A1, . . . , An) ∈ Γ. Therefore, f}(e(A1,Γ), . . . , e(An,Γ)) =
1 = e(}(A1, . . . , An),Γ).

L ∈ {K(})m
3¬ ,G

(})m
3¬ }. Let 〈t, h, f〉 be such that e(Ai,Γ) = 1, for each i ∈ t, e(Aj,Γ) = 1/2, for each

j ∈ h, and e(Ak,Γ) = 0, for each k ∈ f. Hence, Ai ∈ Γ, ¬Ai 6∈ Γ, Aj 6∈ Γ, ¬Aj 6∈ Γ, Ak 6∈ Γ, ¬Ak ∈ Γ,
for each i ∈ t, j ∈ h, and k ∈ f.

Suppose that f}(〈t, h, f〉) = 0. By (Γ0
K3
), for each i ∈ t, j ∈ h, and k ∈ f, it holds that Ai,¬Ak ∈ Γ

implies ¬}(A1, . . . , An) ∈ Γ or Aj ∈ Γ or ¬Aj ∈ Γ. Since Ai,¬Ak ∈ Γ, ¬}(A1, . . . , An) ∈ Γ or
Aj ∈ Γ or ¬Aj ∈ Γ. Since Aj 6∈ Γ and ¬Aj 6∈ Γ, ¬}(A1, . . . , An) ∈ Γ. By (ΓC), }(A1, . . . , An) 6∈ Γ.
Therefore, f}(e(A1,Γ), . . . , e(An,Γ)) = 0 = e(}(A1, . . . , An),Γ).

Suppose that f}(〈t, h, f〉) = 1/2. By (Γ1/2
K3
), for each i ∈ t, j ∈ h, and k ∈ f, it holds that

}(A1, . . . , An), Ai,¬Ak ∈ Γ implies Aj ∈ Γ or ¬Aj ∈ Γ, as well as ¬}(A1, . . . , An), Ai,¬Ak ∈ Γ
implies Aj ∈ Γ or ¬Aj ∈ Γ. Since Aj 6∈ Γ and ¬Aj 6∈ Γ, (}(A1, . . . , An) 6∈ Γ and ¬}(A1, . . . , An) 6∈ Γ)
or Ai 6∈ Γ or ¬Ak 6∈ Γ Since Ai,¬Ak ∈ Γ, }(A1, . . . , An) 6∈ Γ and ¬}(A1, . . . , An) 6∈ Γ. Therefore,
f}(e(A1,Γ), . . . , e(An,Γ)) = 1/2 = e(}(A1, . . . , An),Γ).

Suppose that f}(〈t, h, f〉) = 1. By (Γ1
K3
), for each i ∈ t, j ∈ h, and k ∈ f, it holds that

Ai,¬Ak ∈ Γ implies }(A1, . . . , An) ∈ Γ or Aj ∈ Γ or ¬Aj ∈ Γ. Hence, }(A1, . . . , An) ∈ Γ. By (ΓC),
¬}(A1, . . . , An) 6∈ Γ. Therefore, f}(e(A1,Γ), . . . , e(An,Γ)) = 1 = e(}(A1, . . . , An),Γ).

Definition 90. Let L ∈ {LP(})m
¬ ,DG

(})m
3¬ ,K

(})m
3¬ ,G

(})m
3¬ }. Let Γ be an L-theory and p ∈ P . Then

vΓ is said to be a canonical valuation iff vΓ(p) = e(p,Γ).

Lemma 91. Let L ∈ {LP(})m
¬ ,DG

(})m
3¬ ,K

(})m
3¬ ,G

(})m
3¬ }. Let Γ be an L-theory, A ∈ F¬

(})m
, and vΓ

be a canonical valuation. Then vΓ(A) = e(A,Γ).

Proof. By induction on A. Use Lemma 89.
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Lemma 92 (Lindenbaum). Let L ∈ {LP(})m
¬ ,DG

(})m
3¬ ,K

(})m
3¬ ,G

(})m
3¬ }. Let Γ ⊆ F¬

(})m
, A ∈ F¬

(})m
,

and Γ 6`L A. Then there exists an L-theory ∆ such that Γ ⊆ ∆ and ∆ 6`L A.

Proof. By standard method of the proof of Lindenbaum’s Lemma (see, for example, [96, 145]).
Assume that Γ 6`L A. Let D1, . . . , Dh, . . . be an enumeration of all the members of F¬

(})m
. Let us

define ∆ as follows, where Θ0 ⊆ F¬
(})m

, . . . ,Θl ⊆ F¬
(})m

, . . .:

Θ0 = Γ

Θt+1 =

{
Θt ∪ {Dt+1}, if Θt ∪ {Dt+1} 6` A;

Θt otherwise;

∆ =
∞⋃
t=0

Θt.

By the definition of ∆, we have Γ ⊆ ∆. By a straightforward induction on i, one can easily prove
that ∆ 6`L A. Since ∆ 6`L A, ∆ satisfies (ΓN). By the transitivity of the consequence relation, we
obtain that ∆ satisfies (ΓCl).

Suppose that L = LP(})m
¬ . Let us prove that ∆ satisfies (ΓM). Suppose that for some B ∈ F¬

(})m
,

it holds that B 6∈ ∆ and ¬B 6∈ ∆. Then there are De and Dg such that De = B and Dg = ¬B,
Θe−1∪{De} `L A and Θg−1∪{Dg} `L A. Then ∆∪{De} `L A and ∆∪{Dg} `L A, since Θe−1 ⊆ ∆
and Θg−1 ⊆ ∆. By the rule (EM), ∆ `L A. Contradiction. Thus, for any B ∈ F¬

(})m
, it holds that

B ∈ ∆ or ¬B ∈ ∆.
Let us prove that ∆ satisfies (Γ0

LP). Assume that for some B1, . . . , Bn ∈ F¬
(})m

, }(B1, . . . , Bn) ∈
∆, for each j ∈ h, Bj,¬Bj ∈ ∆, while for each i ∈ t, ¬Bi 6∈ ∆ and for each k ∈ f, Bk 6∈ ∆. Then there
are De = ¬Bi and Dg = Bk such that Θe−1∪{De} `L A and Θg−1∪{Dg} `L A. Then ∆∪{De} `L A
and ∆ ∪ {Dg} `L A. By the rule R}(〈t, h, f〉0), ∆ `L A. Contradiction. Thus, }(A1, . . . , An) ∈ Γ,
for each j ∈ h, Aj,¬Aj ∈ Γ implies for some i ∈ t, ¬Ai ∈ Γ or for some k ∈ f, Ak ∈ Γ.

The other cases are considered similarly.

Theorem 93 (Completeness). Let L ∈ {LP(})m
¬ ,DG

(})m
3¬ ,K

(})m
3¬ ,G

(})m
3¬ }. Let Γ ⊆ F¬

(})m
and A ∈

F¬
(})m

. Then Γ |=L A implies Γ `L A.

Proof. By contraposition. Let L ∈ {LP(})m
¬ ,DG

(})m
3¬ ,K

(})m
3¬ ,G

(})m
3¬ }. Suppose Γ 6`L A. By Lemma

92, there is an L-theory ∆ such that Γ ⊆ ∆ and ∆ 6`L A. Let v∆ be a canonical valuation introduced
in Definition 90. Let L ∈ {LP(})m

¬ ,DG
(})m
3¬ }. By Lemma 91, v∆(B) 6= 0, for each B ∈ Γ, while

v(A) = 0. Thus, Γ 6|=L A. Let L ∈ {K(})m
3¬ ,G

(})m
3¬ }. By Lemma 91, v∆(B) = 1, for each B ∈ Γ, while

v(A) 6= 1. Thus, Γ 6|=L A.

Corollary 94 (Adequacy). Let L ∈ {LP(})m
¬ ,DG

(})m
3¬ ,K

(})m
3¬ ,G

(})m
3¬ }. Let Γ ⊆ F¬

(})m
and A ∈

F¬
(})m

. Then Γ |=L A iff Γ `L A.

Proof. Follows from Theorems 82 and 93.

3.4 Proof of the normalisation theorem

Following [104, Definition 4], we understand the notion of a maximal formula in the subsequent way.

Definition 95 (Maximal formula). A maximal formula with the main operator ¬ or } in a deduction
in one of the logics in question is an occurrence of a formula ¬A or }(A1, . . . , An) that is the major
premise of an application of a general elimination rule for ¬ or} and the major assumption discharged
by an application of a general introduction rule for ¬ or }.
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Note that among maximal formulas of the form ¬A there may be formulas ¬}(A1, . . . , An) and
¬¬B.

Definition 96 (Degree of a formula). We define a degree d of a formula A inductively as follows,
where p is an atomic formula:

• d(p) = d(¬p) = 1,

• if A 6= p, then d(¬A) = d(A) + 1,

• d(}(A1, . . . , An)) =
∑i=n

i=1 d(Ai) + 2.

One of the features of this definition is that if } is a unary connective, then }A has a higher
degree than ¬A which is important for the forthcoming reduction and permutation procedures. In
the case of unary connectives, as some of the rules of an inference discharge negated subformulas
of major premises or assumptions, it can happen that the procedure introduces a maximal formula
that is a negated subformula of the maximal formula to be removed. If the main connective in
question is unary, then determining the complexity of formulas as usual by counting connectives one
each would introduce a maximal formula of the same degree as the removed maximal formula. Our
measure of complexity avoids this. Another property is that literals have the same degree which is
also important, since we are using negated formulas in the simplified reductions which justify the
negation subformula property.

The notions of a segment, its length and degree, a maximal segment, a deduction in normal form,
and a rank of a deduction are understood according to Definitions 51, 52, 53, 54, and 55,

We begin our proof with an example of simplicity conversions which can remove applications of
rules with vacuous discharge above arbitrary premises. Since these conversions are rather obvious,
we give just one example.

D1

}( ~A)

D†2
B

D‡3

A‡j

D‡4

¬A‡j
D∗5
B

R}
(
〈t, h, f〉0

)
B

99K D†2
B

†for each i ∈ t, ‡for each j ∈ h, ∗for each k ∈ f.

Also, before we start the main part of the proof, let us consider the case of maximal segments
described in the second clause of Definition 51. We illustrate it under example of two applications
of the rule R}

(
〈t, h, f〉0

)
such that t = f = ∅ (the other cases are similar, although in the proof for

K3 we will pay a special attention to the case with (EFQ)).

D1

}( ~A)

D†2

A†j

D†3

¬A†j
R}
(
〈∅, h, ∅〉0

)
}( ~B)

D‡4

B‡j

D‡5

¬B‡j
R}
(
〈∅, h′, ∅〉0

)
C

99K
D1

}( ~A)

D†2

A†j

D†3

¬A†j
R}
(
〈∅, h, ∅〉0

)
C

† for each j ∈ h, ‡ for each j ∈ h′.

3.4.1 The case of LP: reduction procedures

The next lemma, which helps in the normalisation proof, establishes that (EM) can be restricted to
discharging only one major assumption, i.e., an assumption of the form ¬α above its right premise,
that is, the assumption class of major assumptions discharged is a singleton. (The case where it
is empty may be excluded: clearly such an application is superfluous and may be removed from
deductions following the usual pattern of simplification conversions).
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In essence, the proof proceeds by multiplying an application of (EM) that discharges more than
one major assumption so that a sequence of application of (EM) results where each of which dis-
charges only one. It needs to be ensured, however, that applications of (EM) that discharge major
assumptions that occur above the left premise of the application of (EM) to be treated are not multi-
plied. The procedure needs to ensure that it does not introduce more and more applications of (EM)
that discharge more than one major assumption. To handle this case, we need a definition to capture
the following possibility. Above the left premise of an application of (EM), other applications of
(EM) discharge major assumptions, above the left premises of which yet other applications of (EM)
also discharge major assumptions, and so on. In any such sequence of applications of (EM) there will
be the first and the last. There may also be further applications of rules of inference interspersed,
but these need not concern us.

Definition 97 ((EM)-chain). A chain of applications of (EM), (EM)1, (EM)2 ... (EM)n, (an (EM)-
chain for short) is a sequence of applications of (EM) such that above the right premise of (EM)1 no
assumptions are discharged that stand above the left assumption of another application of (EM) (i.e.,
no minor assumptions discharged by another application of (EM)), above the left premise of (EM)1

there are such assumptions (i.e., major assumptions discharged by other applications of (EM)); for
every i < n, there is a j such that i+ j ≤ n, (EM)i+j discharges assumptions above its right premise
(i.e., its major assumptions) that stand above the left premise of (EM)i; and above the left premise
of (EM)n no assumptions are discharged that stand above the right premise of another application
of (EM) (i.e., no major assumptions of other applications of (EM)).

Lemma 98. Any deduction in LP(})m
¬ (resp. DG

(})m
3¬ ) can be transformed into one in which every

application of the rule (EM) discharges exactly one major assumption.

Proof. First, by the ban of vacuous discharge, every application of (EM) discharges at least one
major assumption. Consider the last application of (EM) of an (EM)-chain that discharges more
than one major assumption (i.e., the assumption class of which contains more than one formula),
say it discharges l formula occurrences of the type ¬A:

[A]a

D
B

[¬A]b, [¬A]b, . . . , [¬A]b︸ ︷︷ ︸
E
B(EM)a,b

B

Instead of making this one application of (EM), one can apply it l times:

[A]a

D
B

[A]a

D
B

[A]a

D
B

[¬A]1, [¬A]2, . . . , [¬A]l︸ ︷︷ ︸
E
B(EM)a,1

B(EM)a,2
B
...
B(EM)a,l

B

As (EM)a,b is the last application of the (EM)-chain, no further major assumptions of (EM) are
discharged in D in the original deduction, and hence none are multiplied in the reduced deduction.

It remains to find a suitable induction measure: the number of applications of (EM) that discharge
more than one major assumption in a deduction suffices: this number has been reduced by one by the
above procedure. For systematicity in applying the procedure, apply the procedure to an (EM)-chain
such that no other (EM)-chain stands below it in the deduction.
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The negation fragment of LP

Maximal formulas. Case 1. The maximal formula has the form ¬¬A; the rules (¬¬I) and
(¬¬E) are applied. Convert the deduction on the left into the deduction on the right (the symbol
99K stands for the replacement).

D
A

[¬¬A]a

[A]b

E1

B
(¬¬E)b

B
E2

C(¬¬I)a
C

99K

D
A

D
A
E1

B
E2

C(¬¬I)a
C

Case 2. The maximal formula has the form ¬¬A; the rules (EM) and (¬¬E) are applied.

[¬A]a

D1

B

[¬¬A]b

[A]c

D2

C
(¬¬E)c

C
D3

B(EM)a,b
B

99K

[A]c

D2

C
D3

B

[¬A]a

D1

B(EM)c,a
B

Note that due to Lemma 98 there is only one formula in the assumption class b (Lemma 98 has
to be applied before doing this reduction).

Maximal segments. Case 3. The major premise of (¬¬E) is derived by (¬¬I).

D1

A

[¬¬A]a

D2

¬¬B(¬¬I)a ¬¬B

[B]b

D3

C
(¬¬E)b

C

99K D1

A

[¬¬A]a

D2

¬¬B

[B]b

D3

C
(¬¬E)b

C(¬¬I)a
C

Notice that B may coincide with A. Then we have a simpler situation (in what follows, we will
not emphasize such cases).

D
A [¬¬A]a

(¬¬I)a ¬¬A

[A]b

E
C

(¬¬E)b
C

99K

D
A
E
C

Case 4. The major premise of (¬¬E) is derived by (EM).

[B]a

D1

¬¬A

[¬B]b

D2

¬¬A(EM)a,b ¬¬A

[A]c

D3

C(¬¬E)c
C

99K

[B]a

D1

¬¬A

[A]c

D3

C(¬¬E)c
C

[¬B]b

D2

¬¬A

[A]c

D3

C(¬¬E)c
C(EM)a,b

C
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The negation fragment of LP extended by n-ary operators }1, . . . ,}m

Maximal formulas. Case 1. The maximal formula of the form ¬}( ~A) is produced by applications
of the rules R}

(
〈t, h, f〉1

)
and (EM) (<1 and <2, respectively, stand for them).

[}( ~A)]a

D1

C

[¬}( ~A)]b

[¬A†i ]c

D†2
B

D‡3

A‡j

D‡4

¬A‡j

[A∗k]d

D∗5
B

<c,d
1 B

E
C<a,b

2 C

†for each i ∈ t, ‡for each j ∈ h, ∗for each k ∈ f.

To eliminate the maximal formula we need to replace the above derivation with the following
one, containing the application of the rule R}

(
〈t, h, f〉1/2

)
(we abbreviate it as <3). Recall that it is

derivable in the presence of R}
(
〈t, h, f〉1

)
and (EM) (see Proposition 78), but since this derivation is

itself not normal we postulated that R}
(
〈t, h, f〉1/2

)
has to be a primitive rule in a system in order

to prove normalisation.

[}( ~A)]a

D1

C

[¬A†i ]c

D†2
B
E
C

D‡3

A‡j

D‡4

¬A‡j

[A∗k]d

D∗5
B
E
C

<a,c,d
3 C

†for each i ∈ t, ‡for each j ∈ h, ∗for each k ∈ f.

Note that due to Lemma 98 there is only one formula in the assumption class b (Lemma 98 has
to be applied before doing this reduction).

Case 2. Subcase 2.1. The maximal formula}( ~A) produced by applications of the rulesR}
(
〈t, h, f〉0

)
and R}

(
〈t′, h′, f′〉1/2

)
which we denote by <1 and <2, respectively.

[}( ~A)]a

[¬A†i ]b

D†1
B

D‡2

A‡j

D‡3

¬A‡j

[A∗k]c

D∗4
B

<b,c
1 B

E
C

[¬A]
i′ ]

d

D]
5

C

D§6

A§j′

D§7

¬A§j′

[A?
k′ ]

e

D?
8

C
<a,d,e

2 C

†for each i ∈ t, ‡for each j ∈ h, ?for each k ∈ f; ]for each i′ ∈ t′, §for each j′ ∈ h′, ?for each k′ ∈ f′.

This case is the most complicated in our proof. First of all, let us recall that all the formulas
¬Ai, Aj,¬Aj, Ak,¬Ai′ , Aj′ ,¬Aj′ , Ak′ are either subformulas or negations of subformulas of }( ~A) =
}(A1, . . . , An). We need to have more details about the other rules which are present in the system.
Let us observe that this case can be reformulated in the following way.
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[}( ~A)]a X1 . . . Xn<b,c
1 B

E
C Y1 . . . Yn<a,d,e

2 C

where X1, . . . , Xn and Y1, . . . , Yn are abbreviations for the following derivations, for any t, u ∈
{1, . . . , n}.

Xt =



[At]
b

D1

B
iff t ∈ f;

D2 D3

At ¬At
iff t ∈ h;

[¬At]
c

D4

B
iff t ∈ t;

Yu =



[Au]d

D5

C
iff u ∈ f′;

D6 D7

Au ¬Au
iff u ∈ h′;

[¬Au]e

D8

C
iff u ∈ t′.

As follows from these equalities and soundness of our natural deduction systems, there is l ∈
{1, . . . , n} such that Xl 6= Yl.7 Then the following combinations are possible (we present them in the
form of ordered pairs 〈Xl, Yl〉):

C1 =

〈 [Al]
b

D1

B
,
D6 D7

Al ¬Al

〉
C2 =

〈 [Al]
b

D1

B
,

[¬Al]
e

D8

C

〉

C3 =

〈
D2 D3

Al ¬Al
,

[Al]
d

D5

C

〉
C4 =

〈
D2 D3

Al ¬Al
,

[¬Al]
e

D8

C

〉

C5 =

〈 [¬Al]
c

D4

B
,

[Al]
d

D5

C

〉
C6 =

〈 [¬Al]
c

D4

B
,
D6 D7

Al ¬Al

〉

Let us consider the case C1.

[}( ~A)]a X1 . . . Xl−1

[Al]
b

D1

B Xl+1 . . . Xn<b,c
1 B

E
C Y1 . . . Yl−1

D6

Al

D7

¬Al Yl+1 . . . Yn<a,d,e
2 C

Then we can introduce the following reduction procedure:

D6

Al

D1

B
E
C Y1 . . . Yl−1

D6

Al

D7

¬Al Yl+1 . . . Yn<a,d,e
2 C

7Otherwise t = t′, h = h′, and f = f′ which implies that both f}
(
〈t, h, f〉

)
= 0 and f}

(
〈t, h, f〉

)
= 1/2.



3.4. PROOF OF THE NORMALISATION THEOREM 81

Let us consider the case C2.

[}( ~A)]a X1 . . . Xl−1

[Al]
b

D1

B Xl+1 . . . Xn<b,c
1 B

E
C Y1 . . . Yl−1

[¬Al]
e

D8

C Yl+1 . . . Yn<a,d,e
2 C

Then we can introduce the following reduction procedure:

[Al]
b

D1

B

[¬Al]
e

D8

B(EM)b,e
B
E
C Y1 . . . Yl−1

[¬Al]
e

D8

C Yl+1 . . . Yn<a,d,e
2 C

The case C5 is considered similarly.
Let us consider the case C3.

[}( ~A)]a X1 . . . Xl−1

D2

Al

D3

¬Al Xl+1 . . . Xn<b,c
1 B

E
C Y1 . . . Yl−1

[Al]
d

D5

C Yl+1 . . . Yn<a,d,e
2 C

Then we can introduce the following reduction procedure:

D2

Al

D5

C
E∗

C Y1 . . . Yl−1

[Al]
d

D5

C Yl+1 . . . Yn<a,d,e
2 C

where E∗ is defined via the ρ-reduction described in the normalisation proof for Segerberg’s system
on p. 55.

Let us consider the case C4.

[}( ~A)]a X1 . . . Xl−1

D2

Al

D3

¬Al Xl+1 . . . Xn

B
E
C Y1 . . . Yl−1

[¬Al]
e

D8

C Yl+1 . . . Yn<b,c
1 <a,d,e

2 C

The reduction procedure is as follows.
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D3

¬Al

D8

C
E∗

C Y1 . . . Yl−1

[¬Al]
e

D8

C Yl+1 . . . Yn<a,d,e
2 C

where E∗ is defined according to the ρ-reduction described in the normalisation proof for Segerberg’s
system on p. 55.

Let us emphasize that } can be a unary connective. But due to our definition of the degree of a
formula, the degree of }A is higher than the degree of ¬A. The case C6 is considered similarly.

Subcase 2.2. The maximal formula ¬}( ~A) produced by applications of the rules R}
(
〈t, h, f〉1

)
and R¬}

(
〈t′, h′, f′〉1/2

)
. Similarly to the previous subcase: replace }( ~A) with ¬}( ~A).

Maximal segments. Case 3. Subcase 3.1. The maximal segment with formula ¬¬B and the
applications of the rules R}

(
〈t, h, f〉0

)
(or R}

(
〈t, h, f〉1/2

)
) and (¬¬E) (we abbreviate them as <1 and

<2, respectively).

X

[¬A†i ]b

D†2
¬¬B

D‡3

A‡j

D‡4

¬A‡j

[A∗k]c

D∗5
¬¬B

<a,b,c
1 ¬¬B

[B]d

D6

C<d
2 C

†for each i ∈ t, ‡for each j ∈ h, ∗for each k ∈ f, where X is one of these two options depending on
the applied rule (either R}

(
〈t, h, f〉0

)
in the left option or R}

(
〈t, h, f〉1/2

)
in the right option):

D1

}( ~A)

[}( ~A)]a

D′1
¬¬B

The permutative reduction procedure is as follows.

Y

[¬A†i ]b

D†2
¬¬B

[B]d

D6

C<d
2 C

D‡3

A‡j

D‡4

¬A‡j

[A∗k]c

D∗5
¬¬B

[B]d

D6

C<d
2 C

<a,b,c
1 C

†for each i ∈ t, ‡for each j ∈ h, ∗for each k ∈ f, where Y is one of these two options depending on
the applied rule (either R}

(
〈t, h, f〉0

)
in the left option or R}

(
〈t, h, f〉1/2

)
in the right option):

D1

}( ~A)

[}( ~A)]a

D′1
¬¬B

[B]d

D6

C<d
2 C

Notice that if C is also on a maximal segment, the procedure increases its length by one. But
that can be handled by choosing a suitable maximal segment, i.e., ensuring that the one which have
been shortened by the procedure, consists of formulas of a higher degree than C.

Subcase 3.2. The maximal segment with the formula ¬¬B and the applications of the rules
R}
(
〈t, h, f〉1

)
(or R¬}

(
〈t, h, f〉1/2

)
) and (¬¬E). Similarly to Subcase 3.1.
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Case 4. Subcase 4.1. The maximal segment with the formula }1( ~B) (}1 and }2 can be distinct
operators, but can coincide) and the applications of the rules R}2

(
〈t, h, f〉1/2

)
and R}1

(
〈t′, h′, f′〉0

)
(or R}2

(
〈t, h, f〉0

)
) which we denote by <1 and <2, respectively.

X

[¬A†i ]b

D†2

}1( ~B)

D‡3

A‡j

D‡4

¬A‡j

[A∗k]c

D∗5

}1( ~B)
<a,b,c

1
}1( ~B)

[¬B]
i′ ]

d

D]
6

C

D§7

B§j′

D§8

¬B§j′

[B?
k′ ]

e

D?
9

C
<d,e

2 C
†for each i ∈ t, ‡for each j ∈ h, ∗for each k ∈ f; ]for each i′ ∈ t′, §for each j′ ∈ h′, ?for each k′ ∈ f′,
where X is one of the following options depending on the applied rule (R}2

(
〈t, h, f〉1/2

)
in the option

on the left side and R}2

(
〈t, h, f〉0

)
in the option on the right side):

[}2( ~A)]a

D1

}1( ~B)

D′1

}2( ~A)

Let us introduce an abbreviation A2 for the following derivations:

[¬B]
i′ ]

d

D]
6

C

D§7

B§j′

D§8

¬B§j′

[B?
k′ ]

e

D?
9

C

]for each i′ ∈ t′, §for each j′ ∈ h′, ?for each k′ ∈ f′.

The permutative reduction procedure is as follows.

Y

[¬A†i ]b

D†2

}1( ~B) A2<d,e
2 C

D3

A‡j

D4

¬A‡j

[A∗k]c

D∗5

}1( ~B) A2<d,e
2 C

<a,b,c
1 C

†for each i ∈ t, ‡for each j ∈ h, ∗for each k ∈ f, where Y is one of the following options depending
on the applied rule (R}2

(
〈t, h, f〉1/2

)
in the option on the left side and R}2

(
〈t, h, f〉0

)
in the option

on the right side):

[}2( ~A)]a

D1

}1( ~B) A2<d,e
2 C

D′1

}2( ~A)

Subcase 4.2. The maximal segment with the formula of the form ¬}1( ~B) and the applications
of the rules R}2

(
〈t, h, f〉1/2

)
(or R}2

(
〈t, h, f〉0

)
) and R}1

(
〈t′, h′, f′〉1

)
. Similar to Subcase 4.1: replace

}1( ~B) with ¬}1( ~B).
Subcase 4.3. The maximal segment with the formula }1( ~B) and the applications of the rules

R¬}2

(
〈t, h, f〉1/2

)
(or R¬}2

(
〈t, h, f〉1

)
) and R}1

(
〈t′, h′, f′〉0

)
. Similar to Subcase 4.1: replace }2( ~A) with

¬}2( ~A).
Subcase 4.4. The maximal segment with the formula ¬}1( ~B) and the applications of the rules

R¬}2

(
〈t, h, f〉1/2

)
(or R¬}2

(
〈t, h, f〉1

)
) and R}1

(
〈t′, h′, f′〉1

)
. Similar to Subcase 4.1: replace }2( ~A) with

¬}2( ~A) and }1( ~B) with ¬}1( ~B).
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Case 7. Subcase 7.1. Consider the maximal segment with the formula }( ~A) and the applications
of the rules (EM) and R}

(
〈t, h, f〉0

)
(we abbreviate them as <1 and <2, respectively).

[C]a

D1

}( ~A)

[¬C]b

D2

}( ~A)
<a,b

1
}( ~A)

[¬A†i ]c

D†3
B

D‡4

A‡j

D‡5

¬A‡j

[A∗k]d

D∗6
B

<c,d
2 B

†for each i ∈ t, ‡for each j ∈ h, ∗for each k ∈ f.

Let us introduce an abbreviation A1 for the following derivations.

[¬A†i ]c

D†3
B

D‡4

A‡j

D‡5

¬A‡j

[A∗k]d

D∗6
B

†for each i ∈ t, ‡for each j ∈ h, ∗for each k ∈ f.

The permutative reduction procedure shortening the maximal segment by one is as follows.

[C]a

D1

}( ~A) A1<c,d
2 B

[¬C]b

D2

}( ~A) A1<c,d
2 B<a,b

1 B

Subcase 7.2. The maximal segment with the formula ¬}( ~A) and the applications of the rules
(EM) and R}

(
〈t, h, f〉1

)
. It is similar to Subcase 7.1: just replace }( ~A) with ¬}( ~A).

3.4.2 The case of DG3

The negation fragment of DG3

Maximal formulas. Case 1. The maximal formula of the form ¬¬A is produced by applications
of (EM) and (EFQ¬) (we abbreviate them as <1 and <2, respectively). We transform the derivation
as follows.

[¬A]a

D1

C

[¬¬A]b
D2

¬A
<2 B

E
C<a,b

1 C

99K

D2

¬A
D1

C
E∗

C

where E∗ is defined according to the ρ-reduction described in the normalisation proof for Segerberg’s
system on p. 55. Due to Lemma 98 there is exactly one formula in the assumption class b (Lemma
98 has to be applied before doing this reduction).
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Maximal segments. Case 2. The maximal segment with the formula ¬¬B is produced by two
applications of the rule (EFQ¬).

D1

¬¬A
D2

¬A
¬¬B

D3

¬B
C

99K
D1

¬¬A
D2

¬A
C

Case 3. The maximal segment with the formula ¬¬A and the applications of (EM) and (EFQ¬).
We transform the derivation as follows.

[B]a

D1

¬¬A

[¬B]b

D2

¬¬A<a,b
1 ¬¬A

D3

¬A<2 C

99K

[B]a

D1

¬¬A
D3

¬A<2 C

[¬B]b

D2

¬¬A
D3

¬A<2 C<a,b
1 C

The negation fragment of DG3 extended by n-ary operators }1, . . . ,}m

Since DG
(})m
3¬ has the same rules for n-ary operators as LP

(})m
¬ , the cases when in DG

(})m
3¬ maximal

formulas or maximal segments are produced by these rules, are the same as in LP
(})m
¬ . Moreover,

both DG
(})m
3¬ and LP

(})m
¬ have the rule (EM). So, the cases when in DG

(})m
3¬ maximal formulas

or maximal segments are produced by (EM) and the rules for n-ary operators, are the same as in
LP

(})m
¬ . We need to consider the cases when in DG

(})m
3¬ maximal formulas or maximal segments are

produced by (EFQ¬) and the rules for n-ary operators.

Maximal formulas. Case 1. Subcase 1.1. The maximal formula }( ~A) produced by applications
of the rules (EFQ¬) and R}

(
〈t, h, f〉0

)
(we abbreviate them as <1 and <2, respectively).

D1

¬¬C
D2

¬C<1
}( ~A)

[¬A†i ]a

D†3
B

D‡4

A‡j

D‡5

¬A‡j

[A∗k]b

D∗6
B

<a,b
2 B

99K
D1

¬¬C
D2

¬C<1 B

†for each i ∈ t, ‡for each j ∈ h, ∗for each k ∈ f.

Subcase 1.2. The maximal formula ¬}( ~A) produced by applications of the rules (EFQ¬) and
R}
(
〈t, h, f〉1

)
(we abbreviate them as <1 and <2, respectively). Similarly to the previous case.

Maximal segments. Case 2. Subcase 2.1. The maximal segment with the formula ¬¬B and
the applications of the rules R}

(
〈t, h, f〉1/2

)
(or R}

(
〈t, h, f〉0

)
) and (EFQ¬) (we abbreviate them as

<1 and <2, respectively).

X

[¬A†i ]b

D†2
¬¬B

D‡3

A‡j

D‡4

¬A‡j

[A∗k]c

D∗5
¬¬B

<a,b,c
1 ¬¬B

D6

¬B<2 C

†for each i ∈ t, ‡for each j ∈ h, ∗for each k ∈ f, where X is one of these options depending on which
rules is applied (R}

(
〈t, h, f〉1/2

)
in the option displayed on the left side and R}

(
〈t, h, f〉0

)
in the

option displayed on the right side):
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[}( ~A)]a

D1

¬¬B

D′1

}( ~A)

The permutative reduction procedure is as follows.

Y

[¬A†i ]b

D†2
¬¬B

D6

¬B
C

D‡3

A‡j

D‡4

¬A‡j

[A∗k]c

D∗6
¬¬B

D5

¬B
C

<a,b,c
1 C

†for each i ∈ t, ‡for each j ∈ h, ∗for each k ∈ f, where Y is one of these options depending on which
rules is applied (R}

(
〈t, h, f〉1/2

)
in the option displayed on the left side and R}

(
〈t, h, f〉0

)
in the

option displayed on the right side):

[}( ~A)]a

D1

¬¬B
D6

¬B<2 C

D′1

}( ~A)

Subcase 2.2. The maximal segment with the formula ¬¬B and the applications of the rules
R¬}
(
〈t, h, f〉1/2

)
and (EFQ¬). Similar to Subcase 2.1: replace }( ~A) with ¬}( ~A).

3.4.3 The case of K3

The negation fragment of K3

Maximal formulas. Case 1. The maximal formula of the form ¬¬A is produced by applications
of the rules (¬¬I) and (¬¬E). This case coincides with Case 1 from the proof of the normalisation
theorem for the negation fragment of LP.

Case 2. The maximal formula ¬¬A is produced by two applications of the rules (EFQ) and (¬¬E).
We transform the derivation as follows.

D1

¬B
D2

B(EFQ) ¬¬A

[A]a

D3

C(¬¬E)a
C

99K
D1

¬B
D2

B(EFQ)
C

Maximal segments. Case 3. The maximal segment ¬A is produced by two applications of the
rule (EFQ). We transform the derivation as follows.

D1

¬B
D2

B
¬A

D3

A
C

99K
D1

¬B
D2

B
C

Case 4. The maximal segment with the formula ¬¬A is produced by applications of the rules
(¬¬I) and (EFQ). We transform the derivation as follows.

D1

C

[¬¬C]a

D2

¬¬A(¬¬I)a ¬¬A
D3

¬A(EFQ)
B

99K D1

C

[¬¬C]a

D2

¬¬A
D3

¬A(EFQ)
B(¬¬I)a

B
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The negation fragment of K3 extended by n-ary operators }1, . . . ,}m

Maximal formulas. Case 1. Subcase 1.1. The maximal formula }( ~A) produced by applications
of the rules R̃}

(
〈t, h, f〉1/2

)
and R̃}

(
〈t′, h′, f′〉1

)
which we denote by <1 and <2, respectively.

[}( ~A)]a
D†1

A†i

[A‡j]
b

D‡2
B

[¬A‡j]c

D‡3
B

D∗4
¬A∗k<b,c

1 B
E
C

D]
5

A]
i′

[A§j′ ]
d

D§6
C

[¬A§j′ ]e

D§7
C

D?
8

¬A?
k′<a,d,e

2 C

†for each i ∈ t, ‡for each j ∈ h, ∗for each k ∈ f; ]for each i′ ∈ t′, §for each j′ ∈ h′, ?for each k′ ∈ f′.

Recall that all the formulas Ai, Aj,¬Aj,¬Ak, Ai′ , Aj′ ,¬Aj′ ,¬Ak′ are either subformulas or nega-
tions of subformulas of }( ~A) = }(A1, . . . , An). This case can be reformulated in the following
way.

[}( ~A)]a X1 . . . Xn<b,c
1 B

E
C Y1 . . . Yn<a,d,e

2 C

where X1, . . . , Xn and Y1, . . . , Yn are abbreviations for the following derivations, for any u, t ∈
{1, . . . , n}:

Xu =



D1

Au
iff u ∈ f;

[Au]b [¬Au]c

D2 D3

B B
iff u ∈ h;

D4

¬Au
iff u ∈ t;

Yt =



D5

At
iff t ∈ f′;

[At]
d [¬At]

e

D6 D7

C C
iff t ∈ h′;

D8

¬At
iff t ∈ t′.

As follows from these equalities and soundness of our natural deduction systems, there is l ∈
{1, . . . , n} such that Xl 6= Yl. Then following combinations are possible (we present them in the form
of ordered pairs 〈Xl, Yl〉):

C1 =

〈
D1

Al
,

[Al]
d [¬Al]

e

D6 D7

C C

〉
C2 =

〈
D1

Al
,

D8

¬Al

〉

C3 =

〈 [Al]
b [¬Al]

c

D2 D3

B B
,
D5

Al

〉
C4 =

〈 [Al]
b [¬Al]

c

D2 D3

B B
,

D8

¬Al

〉

C5 =

〈
D4

¬Al
,
D5

Al

〉
C6 =

〈
D4

¬Al
,

[Al]
d [¬Al]

e

D6 D7

C C

〉

Let us consider the case C2.
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[}( ~A)]a X1 . . . Xl−1

D1

Al Xl+1 . . . Xn<b,c
1 B

E
C Y1 . . . Yl−1

D8

¬Al Yl+1 . . . Yn<a,d,e
2 C

The reduction procedure is as follows:

D8

¬Al

D1

Al(EFQ)
B
E
C Y1 . . . Yl−1

D8

¬Al Yl+1 . . . Yn<a,d,e
2 C

The other cases are considered similarly.
Subcase 1.2. The maximal formula ¬}( ~A) produced by applications of the rules R̃}

(
〈t, h, f〉1/2

)
and R̃¬}

(
〈t′, h′, f′〉0

)
. Similarly to the previous subcase: replace }( ~A) with ¬}( ~A).

Case 2. Subcase 2.1. The maximal formula }( ~A) produced by applications of the rules (EFQ) and
R̃}
(
〈t, h, f〉1/2

)
which we denote by <1 and <2, respectively.

D1

C
D2

¬C<1
}( ~A)

D†3

A†i

[A‡j]
a

D‡4
B

[¬A‡j]b

D‡5
B

D∗6
¬A∗k<a,b

2 B

99K
D1

C
D2

¬C<1 B

†for each i ∈ t, ‡for each j ∈ h, ∗for each k ∈ f.

Subcase 2.2. The maximal formula ¬}( ~A) produced by applications of the rules (EFQ) and
R̃¬}
(
〈t, h, f〉1/2

)
. Similarly to the previous case.

Case 3. Subcase 3.1. The maximal segment with the formula ¬B and the applications of the rules
R̃}
(
〈t, h, f〉1

)
(or R̃}

(
〈t, h, f〉1/2

)
) and (EFQ) (we abbreviate them as <1 and <2, respectively).

X

D†2

A†i

[A‡j]
b

D‡3
¬B

[¬A‡j]c

D‡4
¬B

D∗5
¬A∗k<a,b,c

1 ¬B
D6

B<2 C

†for each i ∈ t, ‡for each j ∈ h, ∗for each k ∈ f, where X is one of the following options depending on
the applied rule (R̃}

(
〈t, h, f〉1

)
in the option displayed on the left side, R̃}

(
〈t, h, f〉1/2

)
in the option

displayed on the right side):

[}( ~A)]a

D1

¬B

D′1

}( ~A)

The permutative reduction procedure is as follows.
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Y

D†2

A†i

[A‡j]
b

D‡3
¬B

D6

B
C

[¬A‡j]c

D‡4
¬B

D6

B
C

D∗5
¬A∗k<a,b,c

1 C

†for each i ∈ t, ‡for each j ∈ h, ∗for each k ∈ f, where Y is one of the following options depending
on the applied rule (R̃}

(
〈t, h, f〉1

)
in the option displayed on the left side, R̃}

(
〈t, h, f〉1/2

)
in the

option displayed on the right side):

[}( ~A)]a

D1

¬B
D6

B<2 C

D′1

}( ~A)

Subcase 3.2. The maximal segment with the formula ¬B and the applications of the rules
R̃}
(
〈t, h, f〉0

)
(or R̃¬}

(
〈t, h, f〉1/2

)
) and (EFQ). Similar to the Subcase 3.1.

Case 4. Subcase 4.1. The maximal segment with the formula ¬¬B and the applications of the
rules R̃}

(
〈t, h, f〉1

)
(or R̃}

(
〈t, h, f〉1/2

)
) and (¬¬E) (we abbreviate them as <1 and <2, respectively).

X

D†2

A†i

[A‡j]
b

D‡3
¬¬B

[¬A‡j]c

D‡4
¬¬B

D∗5
¬A∗k<a,b,c

1 ¬¬B

[B]d

D6

C<d
2 C

†for each i ∈ t, ‡for each j ∈ h, ∗for each k ∈ f, where X is one of the following options depending on
the applied rule (R̃}

(
〈t, h, f〉1

)
in the option displayed on the left side, R̃}

(
〈t, h, f〉1/2

)
in the option

displayed on the right side):

[}( ~A)]a

D1

¬¬B

D′1

}( ~A)

The permutative reduction procedure is as follows.

Y

D†2

A†i

[A‡j]
b

D‡3
¬¬B

[B]d

D6

C<d
2 C

[¬A‡j]c

D‡4
¬¬B

[B]d

D6

C<d
2 C

D∗5
¬A∗k<a,b,c

1 B

†for each i ∈ t, ‡for each j ∈ h, ∗for each k ∈ f, where Y is one of the following options depending
on the applied rule (R̃}

(
〈t, h, f〉1

)
in the option displayed on the left side, R̃}

(
〈t, h, f〉1/2

)
in the

option displayed on the right side):

[}( ~A)]a

D1

¬¬B

[B]d

D6

C<d
2 C

D′1

}( ~A)

Subcase 4.2. The maximal segment with the formula ¬¬B and the applications of the rules
R̃}
(
〈t, h, f〉0

)
(or R̃¬}

(
〈t, h, f〉1/2

)
) and (¬¬E). Similarly to subcase 4.1.
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Case 5. Subcase 5.1. The maximal segment with the formula }1( ~B) and the applications of
the rules R̃}2

(
〈t, h, f〉1

)
(or R̃}2

(
〈t, h, f〉1/2

)
) and R̃}1

(
〈t′, h′, f′〉1/2

)
which we denote by <1 and <2,

respectively.

[}2( ~A)]a

D1

}1( ~B)

D†2

A†i

[A‡j]
b

D‡3

}1( ~B)

[¬A‡j]c

D‡4

}1( ~B)

D∗5
¬A∗k<a,b,c

1
}1( ~B)

D]
6

B]
i′

[B§j′ ]
d

D§7
C

[¬B§j′ ]e

D§8
C

D?
9

¬B?
k′<d,e

2 C

†for each i ∈ t, ‡for each j ∈ h, ∗for each k ∈ f; ]for each i′ ∈ t′, §for each j′ ∈ h′, ?for each k′ ∈ f′,
where X is one of the following options depending on the applied rule (R̃}2

(
〈t, h, f〉1

)
in the option

displayed on the left side, R̃}2

(
〈t, h, f〉1/2

)
in the option displayed on the right side):

[}2( ~A)]a

D1

}1( ~B)

D′1

}2( ~A)

Let us introduce an abbreviation A3 for the following derivations.

D]
6

B]
i′

[B§j′ ]
d

D§7
C

[¬B§j′ ]e

D§8
C

D?
9

¬B?
k′

]for each i′ ∈ t′, §for each j′ ∈ h′, ?for each k′ ∈ f′.

The permutative reduction procedure is as follows.

Y

D†2

A†i

[A‡j]
b

D‡3

}( ~B) A3<d,e
2 C

[¬A‡j]c

D‡4

}( ~B) A3<d,e
2 C

D∗5
¬A∗k<a,b,c

1 C

†for each i ∈ t, ‡for each j ∈ h, ∗for each k ∈ f, where Y is one of the following options depending
on the applied rule (R̃}2

(
〈t, h, f〉1

)
in the option displayed on the left side, R̃}2

(
〈t, h, f〉1/2

)
in the

option displayed on the right side):

[}( ~A)]a

D1

}( ~B) A3<d,e
2 C

D′1

}2( ~A)

Subcase 5.2. The maximal segment with the formula ¬}1( ~B) and the applications of the rules
R̃}2

(
〈t, h, f〉1

)
(or R̃}2

(
〈t, h, f〉1/2

)
) and R̃¬}1

(
〈t′, h′, f′〉1/2

)
. Similar to the Subcase 5.1.

Subcase 5.3. The maximal segment with the formula }1( ~B) and the applications of the rules
R̃}2

(
〈t, h, f〉0

)
(or R̃¬}2

(
〈t, h, f〉1/2

)
) and R̃}1

(
〈t′, h′, f′〉1/2

)
. Similar to the Subcase 5.1.

Subcase 5.4. The maximal segment with the formula ¬}1( ~B) and the applications of the rules
R̃}2

(
〈t, h, f〉0

)
(or R̃¬}2

(
〈t, h, f〉1/2

)
) and R̃¬}1

(
〈t′, h′, f′〉1/2

)
. Similar to the Subcase 5.1.
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3.4.4 The case of G3

Lemma 99. Any deduction in G
(})m
3¬ can be transformed into one in which every application of the

rule (EM¬) discharges exactly one major assumption.

Proof. Similarly to Lemma 98.

The negation fragment of G3

Maximal formulas. Case 1. The maximal formula of the form ¬¬A is produced by applications
of the rules (EM¬) and (EFQ) (we abbreviate them as <1 and <2, respectively). We transform the
derivation as follows.

[¬A]a

D1

C

[¬¬A]b
D2

¬A
<2 B

E
C<a,b

1 C

99K

D2

¬A
D1

B
E
C
E∗

C
where E∗ is defined according to the ρ-reduction described in the normalisation proof for Segerberg’s
system on p. 55. Note that due to Lemma 99 there is exactly one formula in the assumption class b
(Lemma 99 has to be applied before doing this reduction).

Maximal segments. Case 2. The maximal segment ¬A is produced by two applications of the
rule (EFQ). Similarly for the Case of the proof the negation fragment of K3.

Case 3. The maximal segment with the formula ¬A and the applications of the rules (EM¬) and
(EFQ) (we abbreviate them as <1 and <2, respectively). The permutative reduction procedure is as
follows.

[¬B]a

D2

¬A

[¬¬B]b

D3

¬A<a,b
1 ¬A

D1

A<2 C

99K

[¬B]a

D2

¬A
D1

A<2 C

[¬¬B]b

D3

¬A
D1

A<2 C<a,b
1 C

The negation fragment of G3 extended by n-ary operators }1, . . . ,}m

Since G
(})m
3¬ has the same rules for n-ary operators as K

(})m
3¬ , the cases when in G

(})m
3¬ maximal

formulas or maximal segments are produced by these rules, are the same as in K
(})m
3¬ . Moreover,

both G
(})m
3¬ and K

(})m
3¬ have the rule (EFQ). So, the cases when in G

(})m
3¬ maximal formulas or

maximal segments are produced by (EFQ) and the rules for n-ary operators, are the same as in
K

(})m
3¬ . We need to consider the cases when in G

(})m
3¬ maximal segments are produced by (EM¬) and

the rules for n-ary operators.
The maximal segment with the formula }( ~A) is produced by applications of the rules (EM¬) and

R̃}
(
〈t, h, f〉1/2

)
(we use for them the abbreviations <1 and <2, respectively).

[¬C]a

D1

}( ~A)

[¬¬C]b

D2

}( ~A)
<a,b

1
}( ~A)

D†3

A†i

[A‡j]
c

D‡4
B

[¬A‡j]d

D‡5
B

D∗6
¬A∗k<c,d

2 B
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†for each i ∈ t, ‡for each j ∈ h, ∗for each k ∈ f.

We introduce an abbreviation A4 for the following derivations.

D†3

A†i

[A‡j]
c

D‡4
B

[¬A‡j]d

D‡5
B

D∗6
¬A∗k

†for each i ∈ t, ‡for each j ∈ h, ∗for each k ∈ f.

Then the permutative reduction procedure is as follows:

[¬C]a

D1

}( ~A) A4<c,d
2 B

[¬¬C]b

D2

}( ~A) A4<c,d
2 B<a,b

1 B

The case when the maximal segment with the formula ¬}( ~A) is produced by applications of the
rules (EM¬) and R̃¬}

(
〈t, h, f〉1/2

)
is similar to the previous one.

3.4.5 Theorems

Theorem 100. Let L ∈ {LP,DG3,K3,G3}. Any deduction in the negation fragment of L or its
extensions by }1, . . . ,}m can be converted into a deduction in normal form.

Proof. By induction over the rank of deductions. Similarly to Theorem 56.

Corollary 101. If Γ ` A in one of the logics in question, then there is a deduction in normal form
with an occurrence of A as the conclusion and occurrences of the formulas in Γ as the undischarged
assumptions.

Theorem 102. If D is a deduction in normal form in one of the logics in question, then all major
premises of elimination rules are (discharged or undischarged) assumptions of D.

Proof. By the form of deductions in normal form, as a result of the permutative reduction procedures.

Corollary 103. If any major premises of elimination rules are on a branch in a deduction in normal
form, then they precede any major assumptions discharged by introduction rules that are on the
branch.

Proof. Follows from Theorem 102.

Theorem 104. Deductions in normal forms in the negation fragments and their extensions by n-ary
connectives }1, . . . ,}m in LP, K3, DG3 and G3 have the negation subformula property.

Proof. By inspection of the rules and an induction over the order of branches.
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3.5 Sequent calculi for the three-valued logics in question
In this section, we present cut-free sequent calculi for the three-valued logics in question based on the
normalised natural deduction systems from the previous sections. As in Section 2.3, we understand
a sequent as an ordered pair written as Γ ⇒ ∆, where Γ and ∆ are finite multisets of formulas.
Obviously, we need an axiom A ⇒ A8, (internal) weakening and contraction rules, and the rule of
cut.

Now we need to transform natural deduction rules into sequent ones. The rules (¬¬E) and (¬¬I)
can be transformed into the following rules:

(¬¬ ⇒)
A,Γ⇒ ∆

¬¬A,Γ⇒ ∆
(⇒ ¬¬)

Γ⇒ ∆, A

Γ⇒ ∆,¬¬A

Indeed, we can easily prove (¬¬E) and (¬¬I) via (¬¬ ⇒), (⇒ ¬¬), structural rules, and axiom.

Γ⇒ ¬¬A
A⇒ B(⇒ ¬¬) ¬¬A⇒ B(Cut)

Γ⇒ B

Γ⇒ A(⇒ ¬¬)
Γ⇒ ¬¬A ¬¬A⇒ B(Cut)

Γ⇒ B

If we rewrite (¬¬ ⇒) and (⇒ ¬¬) in a natural deduction form requiring ∆ be a single formula
and Γ be a single formula (at least in the premiss), then we just get just the rules (¬¬I) via (¬¬ ⇒).
Of course, these restrictions on Γ and ∆ may raise some doubts if we indeed obtain equivalent calculi.
However, in the next chapter we will present a proper completeness proof (and cut admissibility as
well) for the sequent calculi in question (moreover, supplied with modalities), so we should not worry
about that. Our task now is to give a formulation of sequent rules for the logics in question, using
their natural deduction formulations.

Let us go to the other rules. For (EM) we have several options: they can be presented as an
axiom or as one of the rules given below; due to Indrzejczak’s rule generator theorem [82] all these
option are equivalent (it can also be easily justified by a Hintikka-style argument in the next chapter:
for completeness, it is enough to prove ⇒ A,¬A which is either an axiom or is provable with the
help of any rule presented below).

(EMax) ⇒ A,¬A (⇒ EM)
Γ⇒ ∆

Γ⇒ ∆, A,¬A
(⇒ ¬)

A,Γ⇒ ∆

Γ⇒ ∆,¬A

(⇒ ¬−1)
¬A,Γ⇒ ∆

Γ⇒ ∆, A
(EM⇒)

A,Γ⇒ ∆ ¬A,Π⇒ Σ

Γ,Π⇒ ∆,Σ

The axiom (EMax) is used by Avron for the formulation of sequent calculi for LP and its extensions
[5]. The rule (EM⇒) (in a form such that Γ = Π and ∆ = Σ = B) is considered by Negri and von
Plato [131]. Although all these options are equivalent from the view of completeness and obtained
as its consequence cut admissibility, there is a difference, if we are talking about a constructive proof
of cut admissibility: at least we are able to present such a proof only if the rule (EM⇒) is used.

As for the rule (EFQ), the situation is similar. We have five equivalent options, but from the
point of view of a constructive cut elimination, the last option, (⇒ EFQ), is preferable.

(EFQax) A,¬A⇒ (EFQ⇒)
Γ⇒ ∆

A,¬A,Γ⇒ ∆
(¬ ⇒)

Γ⇒ ∆, A

¬A,Γ⇒ ∆

(¬ ⇒−1)
Γ⇒ ∆,¬A
A,Γ⇒ ∆

(⇒ EFQ)
Γ⇒ ∆, A Π⇒ Σ,¬A

Γ,Π⇒ ∆,Σ

8However, if we want to have this axiom restricted to propositional variables, then we have to consider two axioms:
p⇒ p and ¬p⇒ ¬p, for any propositional variable p.
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Similarly, one can find several sequent analogous of the natural deductions rules (EM¬) and
(EFQ¬): just add one more negation to A and ¬A in the above presented analogous versions of (EM
and (EFQ). Again, all versions are equivalent, but for constructive cut admissibility, the latter ones
are needed ((⇒ EM¬) and (⇒ EFQ¬)).

(EMax
¬ ) ⇒ ¬A,¬¬A (⇒ EM¬)

Γ⇒ ∆

Γ⇒ ∆,¬A,¬¬A
(⇒ ¬¬G)

¬A,Γ⇒ ∆

Γ⇒ ∆,¬¬A

(⇒ ¬−1
¬ )
¬¬A,Γ⇒ ∆

Γ⇒ ∆,¬A
(EM¬ ⇒)

¬A,Γ⇒ ∆ ¬¬A,Π⇒ Σ

Γ,Π⇒ ∆,Σ

(EFQax
¬ ) ¬A,¬¬A⇒ (EFQ¬ ⇒)

Γ⇒ ∆

¬A,¬¬A,Γ⇒ ∆
(¬¬G ⇒)

Γ⇒ ∆,¬A
¬¬A,Γ⇒ ∆

(¬¬ ⇒−1)
Γ⇒ ∆,¬¬A
¬A,Γ⇒ ∆

(⇒ EFQ¬)
Γ⇒ ∆,¬A Π⇒ Σ,¬¬A

Γ,Π⇒ ∆,Σ

Notice that for the negation fragment of DG3 Avron [7] uses the rules (⇒ ¬) and (¬¬ ⇒G).
The natural deduction rules for an n-ary connective } can be transformed into the following

sequent rules (the case of LP and DG3):

(¬}⇒LPDG3

〈t,h,f〉1 )
{¬Ai,Γ⇒ ∆}† {Γ⇒ ∆, Aj}‡ {Γ⇒ ∆,¬Aj}‡ {Ak,Γ⇒ ∆}∗

¬}(A1, . . . , An),Γ⇒ ∆
† for each i ∈ t, ‡ for each j ∈ h, ∗ for each k ∈ f.

(⇒ }LPDG3

〈t,h,f〉1/2 )
{¬Ai,Γ⇒ ∆}† {Γ⇒ ∆, Aj}‡ {Γ⇒ ∆,¬Aj}‡ {Ak,Γ⇒ ∆}∗

Γ⇒ ∆,}(A1, . . . , An)
† for each i ∈ t, ‡ for each j ∈ h, ∗ for each k ∈ f.

(⇒ ¬}LPDG3

〈t,h,f〉1/2 )
{¬Ai,Γ⇒ ∆}† {Γ⇒ ∆, Aj}‡ {Γ⇒ ∆,¬Aj}‡ {Ak,Γ⇒ ∆}∗

Γ⇒ ∆,¬}(A1, . . . , An)
† for each i ∈ t, ‡ for each j ∈ h, ∗ for each k ∈ f.

(}⇒LPDG3

〈t,h,f〉0 )
{¬Ai,Γ⇒ ∆}† {Γ⇒ ∆, Aj}‡ {Γ⇒ ∆,¬Aj}‡ {Ak,Γ⇒ ∆}∗

}(A1, . . . , An),Γ⇒ ∆
† for each i ∈ t, ‡ for each j ∈ h, ∗ for each k ∈ f.

The natural deduction rules for an n-ary connective } can be transformed into the following
sequent rules (the case of K3 and G3):

(⇒ }K3G3

〈t,h,f〉1)
{Γ⇒ ∆, Ai}† {Aj,Γ⇒ ∆}‡ {¬Aj,Γ⇒ ∆}‡ {Γ⇒ ∆,¬Ak}∗

Γ⇒ ∆,}(A1, . . . , An)
† for each i ∈ t, ‡ for each j ∈ h, ∗ for each k ∈ f.

(}K3G3

〈t,h,f〉1/2 ⇒)
{Γ⇒ ∆, Ai}† {Aj,Γ⇒ ∆}‡ {¬Aj,Γ⇒ ∆}‡ {Γ⇒ ∆,¬Ak}∗

}(A1, . . . , An),Γ⇒ ∆
† for each i ∈ t, ‡ for each j ∈ h, ∗ for each k ∈ f.

(¬}K3G3

〈t,h,f〉1/2 ⇒)
{Γ⇒ ∆, Ai}† {Aj,Γ⇒ ∆}‡ {¬Aj,Γ⇒ ∆}‡ {Γ⇒ ∆,¬Ak}∗

¬}(A1, . . . , An),Γ⇒ ∆
† for each i ∈ t, ‡ for each j ∈ h, ∗ for each k ∈ f.
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(⇒ ¬}K3G3

〈t,h,f〉0)
{Γ⇒ ∆, Ai}† {Aj,Γ⇒ ∆}‡ {¬Aj,Γ⇒ ∆}‡ {Γ⇒ ∆,¬Ak}∗

Γ⇒ ∆,¬}(A1, . . . , An)
† for each i ∈ t, ‡ for each j ∈ h, ∗ for each k ∈ f.

The notion of the proof in these calculi is defined in a standard way.
Although a completeness proof is given in Section 4 (Theorems 142 and 143), together with

modalities (we find such a way easier: to formulate the proof at once for Kripke semantics, rather
than give it now and then adopt it for the use of possible worlds), a constructive cut elimination
proof can be given already now.

Let us present a constructive cut admissibility proof for the logics in question.9 We use the
strategy by Metcalfe, Olivetti, and Gabbay [123] which we have already applied in Section 2.3.2.
The notions of principal formula, side formulas, parametric formulas, the length l(D) of a derivation
D, and the cut rank r(D) of a derivation D are given in Section 2.3.2. The complexity c(A) of a
formula A is defined as a degree d(A) of the formula A introduced in Definition 96.

Lemma 105 (Right reduction). Let D1 and D2 be derivations such that :

(1) D1 is a derivation of Γ⇒ ∆, A,

(2) D2 is a derivation of Aa,Θ⇒ Λ,

(3) r(D1) ≤ c(A) and r(D2) ≤ c(A),

(4) A is the principal formula of a logical rule in D1.

Then we can construct a derivation D0 of Γa,Θ⇒ Λ,∆a such that r(D0) ≤ c(A).

Proof. By induction on l(D2).
Basic case. Case 1. Let Aa,Θ⇒ Λ be an axiom A⇒ A. What we need to obtain is Γ⇒ ∆, A

which we already have.
Inductive case. We have different cases depending on the last rule applied in D2.
Consider the logic LP. Case 1. The rule of the last application in D2 is (¬¬ ⇒). Subcase 1. A

is principal in D2 and A = ¬¬B, and the rules (⇒ ¬¬) and (¬¬ ⇒) are applied. The last inference
of D2 looks as follows.

B,¬¬Ba,Θ⇒ Λ
(¬¬ ⇒)

¬¬Ba+1,Θ⇒ Λ

The last inference of D1 looks as follows.
Γ⇒ ∆, B

(⇒ ¬¬)
Γ⇒ ∆,¬¬B

What we need to obtain is Γa+1,Θ⇒ ∆a+1,Λ.
By the induction hypothesis, we have a derivation D3 such that r(D3) ≤ c(A): B,Γa+1,Θ ⇒

∆a+1,Λ. Then we apply the cut to the formulas of a lower complexity:

Γ⇒ ∆, B B,Γa+1,Θ⇒ ∆a+1,Λ

Γa+2,Θ⇒ ∆a+2,Λ
(C⇒), (⇒C)

Γa+1,Θ⇒ ∆a+1,Λ

Subcase 1.2. A is not the principal formula in D2. The last inference of D2 looks as follows.
B,Aa,Θ⇒ Λ

(¬¬ ⇒)¬¬B,Aa,Θ⇒ Λ

9However, this proof does not lead us to the negation subformula property, because of the usage of the rules (EM⇒),
(⇒EFQ), (EM¬ ⇒), and (⇒ EFQ¬). However, the negation subformula property is established by a Hintikka-style
completeness argument in the next chapter.
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The last sequent of D1 is Γ⇒ ∆, A, what we need to obtain is ¬¬B,Γa,Θ⇒ ∆a,Λ.
By the induction hypothesis, we have a derivation D3 such that r(D3) ≤ c(A): B,Γa,Θ⇒ ∆a,Λ.

Then we apply the rule (¬¬ ⇒):

B,Γa,Θ⇒ ∆a,Λ
¬¬B,Γa,Θ⇒ ∆a,Λ

Case 2. The rule of the last application in D2 is (¬} ⇒LPDG3

〈t,h,f〉1 ). Subcase 2.1. A is principal in
D2 and A = ¬}(B1, . . . , Bn) = ¬}( ~B). The derivation D2 is as follows.

{Aa,¬Bi,Θ⇒ Λ}† {Aa,Θ⇒ Λ, Bj}‡ {Aa,Θ⇒ Λ,¬Bj}‡ {Aa, Bk,Θ⇒ Λ}∗

Aa+1,Θ⇒ Λ

† for each i ∈ t, ‡ for each j ∈ h, ∗ for each k ∈ f.

The deduction D1 is as follows (the rule (¬}⇒LPDG3

〈t′,h′,f′〉1/2)):

{¬Bi′ ,Γ⇒ ∆}] {Γ⇒ ∆, Bj′}§ {Γ⇒ ∆,¬Bj′}§ {Bk′ ,Γ⇒ ∆}?
Γ⇒ ∆, A

] for each i′ ∈ t′, § for each j′ ∈ h′, ? for each k′ ∈ f′.

What we need to obtain is Γa+1,Θ⇒ ∆a+1,Λ.
Let us recall that ¬Bi, Bj,¬Bj, Bk,¬Bi′ , Bj′ ,¬Bj′ , Bk′ are either subformulas or negations of

subformulas of ¬}( ~B) = ¬}(B1, . . . , Bn). We need to have more details about the other rules which
are present in the system. Let us observe that this case can be reformulated in the following way
(D1 is displayed on the left, D2 is displayed on the right):

X1 . . . Xn

Γ⇒ ∆, A

Y1 . . . Yn
Aa+1,Θ⇒ Λ

where X1, . . . , Xn and Y1, . . . , Yn are abbreviations for the following derivations, for any t, u ∈
{1, . . . , n}:

Xt =



Bt,Γ⇒ ∆ iff t ∈ f′;[
Γ⇒ ∆, Bt

Γ⇒ ∆,¬Bt
iff t ∈ h′;

¬Bt,Γ⇒ ∆ iff t ∈ t′;

Yu =



Aa, Bu,Θ⇒ Λ iff u ∈ f;[
Aa,Θ⇒ Λ, Bu

Aa,Θ⇒ Λ,¬Bu
iff u ∈ h;

Aa,¬Bu,Θ⇒ Λ iff u ∈ t.

As follows from these equalities and soundness of our sequent calculi, there is l ∈ {1, . . . , n} such
that Xl 6= Yl.10 The following combinations are possible (we present them in the form of ordered
pairs 〈Xl, Yl〉):

C1 =

〈
Bl,Γ⇒ ∆ ,

[
Aa,Θ⇒ Λ, Bl

Aa,Θ⇒ Λ,¬Bl

〉
C2 =

〈
Bl,Γ⇒ ∆ , Aa,¬Bl,Θ⇒ Λ

〉
C3 =

〈[
Γ⇒ ∆, Bl

Γ⇒ ∆,¬Bl
, Aa, Bl,Θ⇒ Λ

〉
C4 =

〈[
Γ⇒ ∆, Bl

Γ⇒ ∆,¬Bl
, Aa,¬Bl,Θ⇒ Λ

〉
C5 =

〈
¬Bl,Γ⇒ ∆ , Aa, Bl,Θ⇒ Λ

〉
C6 =

〈
¬Bl,Γ⇒ ∆ ,

[
Aa,Θ⇒ Λ, Bl

Aa,Θ⇒ Λ,¬Bl

〉
Let us consider the case C1. The derivation D1 is as follows:

10Otherwise t = t′, h = h′, and f = f′ which implies that both f}
(
〈t, h, f〉

)
= 1 and f}

(
〈t, h, f〉

)
= 1/2.
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X1 . . . Xl−1 Bl,Γ⇒ ∆ Xl+1 . . . Xn

Γ⇒ ∆, A

The derivation D2 is as follows:
Y1 . . . Yl−1 Aa,Θ⇒ Λ, Bl Aa,Θ⇒ Λ,¬Bl Yl+1 . . . Yn

Aa+1,Θ⇒ Λ

What we need is Γa+1,Θ⇒ ∆a+1,Λ.
By the induction hypothesis, we have a derivation D3 such that r(D3) ≤ c(A): Θ,Γa+1 ⇒

Λ,∆a+1, Bl. Then we apply the cut to the formulas of a lower complexity and structural rules to
obtain the required result:

Θ,Γa+1 ⇒ Λ,∆a+1, Bl Bl,Γ⇒ ∆

Γa+2,Θ⇒ ∆a+2,Λ

Γa+1,Θ⇒ ∆a+1,Λ

The cases C3, C4, and C6 are considered similarly.
Let us consider the case C2. The last inference of D1 is as follows:

X1 . . . Xl−1 Bl,Γ⇒ ∆ Xl+1 . . . Xn

Γ⇒ ∆, A

The last inference of D2 is as follows:
Y1 . . . Yl−1 Aa,¬Bl,Θ⇒ Λ Yl+1 . . . Yn

Aa+1,Θ⇒ Λ

What we need is Γa+1,Θ⇒ ∆a+1,Λ.
By the induction hypothesis, we have a derivation D3 such that r(D3) ≤ c(A): ¬Bl,Γ

a+1,Θ ⇒
Λ,∆a+1. Then we apply the rule (EM⇒) and structural rules to obtain the required result:

Bl,Γ
a+1,Θ⇒ ∆a+1,Λ ¬Bl,Γ

a+1,Θ⇒ Λ,∆a+1

Γ2(a+1),Θ2 ⇒ ∆2(a+1),Λ2

Γa+1,Θ⇒ ∆a+1,Λ

The case C5 is considered similarly.
Subcase 2.2. A is not principal in D2 and A 6= ¬}(B1, . . . , Bn) = ¬}( ~B). The derivation D2 is

as follows.
{Aa,¬Bi,Θ⇒ Λ}† {Aa,Θ⇒ Λ, Bj}‡ {Aa,Θ⇒ Λ,¬Bj}‡ {Aa, Bk,Θ⇒ Λ}∗

Aa+1,¬}( ~B),Θ⇒ Λ

† for each i ∈ t, ‡ for each j ∈ h, ∗ for each k ∈ f.

The deduction D1 is as follows: Γ⇒ ∆, A. What we need is as follows: ¬}( ~B),Γa,Θ⇒ ∆a,Λ.
Using the inductive hypothesis, the rule (¬}⇒LPDG3

〈t,h,f〉1 ), we obtain

{¬Bi,Γ
a,Θ⇒ ∆a,Λ}† {Γa,Θ⇒ ∆a,Λ, Bj}‡ {Γa,Θ⇒ ∆a,Λ,¬Bj}‡ {Bk,Γ

a,Θ⇒ ∆a,Λ}∗

¬}( ~B),Γa,Θ⇒ ∆a,Λ

† for each i ∈ t, ‡ for each j ∈ h, ∗ for each k ∈ f.

Case 3. The rule of the last application in D2 is (}⇒LPDG3

〈t,h,f〉0 ). Similarly to Case 2.
Case 4. The rule of the last application in D2 is (EM⇒). The last inference of D2 is as follows:

B,Aa,Θ1 ⇒ Λ1 ¬B,Aa,Θ2 ⇒ Λ2

Aa,Θ1,Θ2 ⇒ Λ1,Λ2

The last sequent of D1 is Γ ⇒ ∆, A. What we need is Γa,Θ1,Θ2 ⇒ ∆a,Λ1,Λ2. Using the
induction hypothesis and the rule (EM⇒) we obtain the required result:
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B,Γa,Θ1,Θ2 ⇒ ∆a,Λ1,Λ2 ¬B,Γa,Θ1,Θ2 ⇒ ∆a,Λ1,Λ2

Γa,Θ1,Θ2 ⇒ ∆a,Λ1,Λ2

The cases of logics K3, DG3, and G3 are treated similarly.

Lemma 106 (Left reduction). Let D1 and D2 be derivations such that :

(1) D1 is a derivation of Γ⇒ ∆, Ai,

(2) D2 is a derivation of A,Θ⇒ Λ,

(3) r(D1) ≤ c(A) and r(D2) ≤ c(A).

Then we can construct a derivation D0 of Γ,Θi ⇒ Λi,∆ such that r(D0) ≤ c(A).

Proof. The proof is by induction on l(D1). Similarly to Lemma 105.

Theorem 107 (Constructive elimination of cuts). Let L ∈ {LP(})m
¬ ,DG

(})m
3¬ ,K

(})m
3¬ ,G

(})m
3¬ }. If a

derivation D in SCL has an application of (Cut), then it can be transformed into a cut-free derivation
D′.

Proof. Assume that a derivation D in SCL has at least one application of (Cut), i.e., r(D) > 0. The
proof proceeds by the double induction on 〈r(D), nr(D)〉, where nr(D) is the number of applications
of (Cut) in D. Consider the uppermost application of (Cut) in D with a cut rank r(D). We apply
Lemma 106 to its premises and decrease either r(D) or nr(D). Then we can use the inductive
hypothesis.

3.6 Other three-valued logics and four-valued ones
The results obtained by correspondence analysis can be extended to other logics, including some
different three-valued logics and four-valued ones. In this section, we would like to describe their
semantics and natural deduction rules for their negations found by Omori and Wansing [141], and
explain our choice of exactly those logics.

We applied correspondence analysis to the negation fragments of the chosen three-valued logics.
So if we want to deal with other three-valued logics and also four-valued ones, we need mainly to
think about negations and justify their choice. We think that  Lukasiewicz-Kleene’s, Heyting’s, and
Bochvar’s negations are the closest three-valued negations to natural language. Also, they are the
only three-valued negations, which coincide with the classical one being restricted to the set {1, 0} of
truth values. However, in the literature there are options, e.g. Post’s famous negation [159], which is
known as cyclic negation and which does not coincide with the classical one being restricted to the
set {1, 0}: if v(A) = 1, then v(¬A) = 1/2. One may find in the literature its converse [147] together
with natural deduction systems for Post’s logics and their so-called duals in the language with ¬, ∧,
and ∨ (and also a brief survey of other proof systems for Post’s logics).

If we are talking about four-valued negations, then the most famous and convenient option is the
de Morgan negation from Belnap-Dunn’s logic FDE. Other options seem to be much less popular,
although they exist (a bit later we will give truth tables for several such negations).

However, it is good to have some general approach to the choice of negation, providing some
answer to the question of which connectives can be considered negations in a three- and four-valued
setting. Such an approach we found in Omori and Wansing’s paper [141] where the authors consider
Dunn’s semantics for FDE, LP, and K3.

“According to Arnon Avron, the requirement that ¬A is true iff A is false represents “the
idea of falsehood within the language” [1, p. 160]. We shall keep this truth condition for
negated formulas but abandon the classical understanding of falsity as untruth and instead
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treat truth and falsity as two separate primitive semantical notions of equal importance.
There is thus a clear sense in which the unary connectives in this paper written as ¬,
sometimes with a subscript, can be seen as negations. However, there is now room for
tweaking the falsity condition for negation. We will consider all combinations that are
possible for FDE,K3, and LP in a classical metatheory. This gives us sixteen variants of
FDE, four variants of K3, and four variants of LP.” [141, p. 3] (the notation adjusted,
in our bibliography Avron’s paper mentioned here is [6]).

We would like to consider all these negations (some of them are  Lukasiewicz-Kleene’s, Heyting’s,
and Bochvar’s ones) and show that the results obtained by correspondence analysis are applicable
to the logics with these negations as well.

To begin with, let us introduce a four-valued semantics for FDE (in the language with ¬, ∧, and
∨). The truth values are as follows: 1 (true), b (both true and false), n (neither true nor false), and
0 (false). The designated values are 1 and b. In what follows, we will use the following notation, for
any formula A and any valuation v: v(A) ∈ 1 iff v(A) ∈ {1, b}, and v(A) ∈ 0 iff v(A) ∈ {0, b}. In the
case of three-valued logics with 1/2 being designated, just put 1/2 = b, and 1/2 = n otherwise. In what
follows, this notation will simplify some definitions, and as was shown by Omori and Sano [138],
with its help, Belnap-style four-valued semantics can be transformed into Dunn-style two-valued one.
Omori and Wansing [141] use both types of semantics, but for our purposes only the Belnap-style
one is needed. The connectives of FDE are defined as follows11:

A ¬
1 0
b b
n n
0 1

∨ 1 b n 0
1 1 1 1 1
b 1 b 1 b
n 1 1 n n
0 1 b n 0

∧ 1 b n 0
1 1 b n 0
b b b 0 0
n n 0 n 0
0 0 0 0 0

For any finite (multi)sets of formulas Γ and ∆, any formula A:

• Γ |=FDE A iff for any valuation v, if v(B) ∈ 1, for each B ∈ Γ, then v(A) ∈ 1.

• Γ |=FDE ∆ iff for any valuation v, if v(B) ∈ 1, for each B ∈ Γ, then v(C) ∈ 1, for some C ∈ ∆.

“By simple combinatorial considerations, the following sixteen operations exhaust the space of
possible connectives that share the truth condition for negation” [141, p. 5]:

A ¬1 ¬2 ¬3 ¬4 ¬5 ¬6 ¬7 ¬8

1 0 0 0 0 0 0 0 0
b b b b b 1 1 1 1
n n n 0 0 n n 0 0
0 1 b 1 b 1 b 1 b

A ¬9 ¬10 ¬11 ¬12 ¬13 ¬14 ¬15 ¬16

1 n n n n n n n n
b b b b b 1 1 1 1
n n n 0 0 n n 0 0
0 1 b 1 b 1 b 1 b

11FDE is built in the language L¬∧∨ with an alphabet consisting of the set of propositional variables P, the
connectives ¬,∧,∨, left and right parenthesis. The set F¬∧∨ of all L¬∧∨-formulas is defined in a standard inductive
way.
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The negation denoted as ¬1 is the negation of FDE, the negation ¬16 was discussed by Omori
and Wansing in [140].

In the case of K3-style logics, logics where 1/2 is not designated, we put n = 1/2 and obtain the
following four negations:

A ¬1 ¬2 ¬3 ¬4

1 0 0 1/2 1/2
1/2 1/2 0 1/2 0
0 1 1 1 1

The negations ¬1 and ¬2, which have already been considered by us, are  Lukasiewicz-Kleene’s
[115, 95] and Heyting’s [74] negations, respectively. The negation ¬4 is Post’s above-mentioned
negation [159].

In the case of LP-style logics, logics where 1/2 is designated, we put b = 1/2 and obtain the
following four negations:

A ¬1 ¬2 ¬3 ¬4

1 0 0 0 0
1/2 1/2 1/2 1 1
0 1 1/2 1 1/2

The negations ¬1 and ¬3, which have been already considered by us, are  Lukasiewicz-Kleene’s
[115, 95] and Bochvar’s [17] negations, respectively. The negation ¬4 is the above-mentioned converse
of Post’s negation [147].

We will write FDEi, 1 6 i 6 16, Ki
3, 1 6 i 6 4, LPi, 1 6 i 6 4, for the logics built in the

language L¬∧∨, where ¬ is interpreted as ¬i, and the entailment relation is interpreted as in FDE,
K3, and LP, respectively.

Omori and Wansing [141] give natural deduction systems for these negations. The following
system was used by them for FDE (the system for K3 has also the rule (EFQ) and the system for
LP has also the rule (EM)):.12

(∨I1)
A

A ∨B
(∨I2)

B

A ∨B
(∨E)

[A] [B]
A ∨B C C

C

(∧I) A B

A ∧B
(∧E1)

A ∧B
A

(∧E2)
A ∧B
B

(¬∨I) ¬A ¬B
¬(A ∨B)

(¬∨E1)
¬(A ∨B)

¬A
(¬∨E2)

¬(A ∨B)

¬B

(¬∧I1)
¬A

¬(A ∧B)
(¬∧I2)

¬B
¬(A ∧B)

(¬ ∧ E)

[¬A] [¬B]
¬(A ∧B) C C

C

(¬¬I) A

¬¬A
(¬¬E)

¬¬A
A

Omori and Wansing [141] propose the following rules for four-valued negations:

(¬1¬11)
¬1¬1A

A
(¬1¬12)

A

¬1¬1A

12Normalisation was proved for these systems in [105].
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(¬2¬21)
¬2¬2A

A ∨ ¬2A
(¬2¬22)

A

¬2¬2A
(¬2¬23)

¬2A

¬2¬2A

(¬3¬31)
¬3¬3A ¬3A

A
(¬3¬32)

A

¬3¬3A
(¬3¬33)

¬3A ∨ ¬3¬3A

(¬4¬4)
¬4¬4A

(¬5¬51)
¬5A ¬5¬5A

B
(¬5¬52)

¬5¬5A

A
(¬5¬53)

A

¬5A ∨ ¬5¬5A

(¬6¬61)
A ¬6A ¬6¬6A

B
(¬6¬62)

¬6¬6A

A ∨ ¬6A
(¬6¬63)

A

¬6A ∨ ¬6¬6A
(¬6¬64)

¬6A

A ∨ ¬6¬6A

(¬7¬71)
¬7A ¬7¬7A

B
(¬7¬72)

¬7A ∨ ¬7¬7A

(¬8¬81)
A ¬8A ¬8¬8A

B
(¬8¬82)

A ∨ ¬8¬8A
(¬8¬83)

¬8A ∨ ¬8¬8A

(¬9¬91)
¬9¬9A

A
(¬9¬92)

¬9¬9A

¬9A
(¬9¬93)

A ¬9A

¬9¬9A

(¬10¬101)
¬10¬10A

¬10A
(¬10¬102)

¬10A

¬10¬10A

(¬11¬111)
A ¬11¬11A
¬11A

(¬11¬112)
¬11A ¬11¬11A

A
(¬11¬113)

A ∨ ¬11A ∨ ¬11¬11A
(¬11¬114)

A ¬11A
¬11¬11A

(¬12¬121)
A ¬12¬12A

¬12A
(¬12¬122)

A ∨ ¬12¬12A
(¬12¬123)

¬12A

¬12¬12A

(¬13¬13)
¬13¬13A

B

(¬14¬141)
A ¬14¬14A

B
(¬14¬142)

¬14¬14A

¬14A
(¬14¬143)

¬14A

A ∨ ¬14¬14A

(¬15¬151)
A ¬15¬15A

B
(¬15¬152)

¬15A ¬15¬15A

B
(¬15¬153)

A ∨ ¬15A ∨ ¬15¬15A

(¬16¬161)
A ¬16¬16A

B
(¬16¬162)

A ∨ ¬16¬16A

Omori and Wansing [141] propose the following rules for three-valued negations, the case of Ki
3,

where i ∈ {1, 2, 3, 4}:

(EFQ)

D1 D2

¬iA A

B

each logic has the rule (EFQ) as well as the corresponding rules from the following list:

(¬1¬11)
¬1¬1A

A
(¬1¬12)

A

¬1¬1A
(¬2¬21)

¬2A ∨ ¬2¬2A
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(¬3¬31)
¬3¬3A

B
(¬4¬41)

A ¬4¬4A

B
(¬2¬22)

A ∨ ¬4A ∨ ¬4¬4A

Omori and Wansing [141] propose the following rules for three-valued negations, the case of LPi,
where i ∈ {1, 2, 3, 4}:

(EM)a,b

[A]a [¬iA]b

D1 D2

B B

B

each logic has the rule (EM) as well as the corresponding rules from the following list:

(¬1¬11)
¬1¬1A

A
(¬1¬12)

A

¬1¬1A
(¬2¬21)

¬2¬2A

(¬3¬31)
¬3A ¬3¬3A

B
(¬4¬41)

A ¬4A ¬4¬4A

B
(¬4¬42)

A ∨ ¬4¬4A

These natural deduction systems for FDEi, 1 6 i 6 16, Ki
3, 1 6 i 6 4, and LPi, 1 6 i 6 4 are

shown to be sound and complete by Omori and Wansing [141].
In order to show that the above-described results for corresponding analysis for three-valued logics

work for Ki
3, 1 6 i 6 4, and LPi, 1 6 i 6 4 as well as to describe correspondence analysis for FDEi,

1 6 i 6 16, on the basis of Kooi and Tamminga’s paper [97], and later prove the normalisation
theorem for these logics, we need to avoid using ∨ and ∧ for more generality and formulate the rules
for negation as general introduction and elimination rules. Then we will be able to deal with the
negation fragments of these logics and extend them by n-ary operators.

General introduction and elimination rules for four-valued negations:

(¬1¬1E)a

[A]a

D1 D2

¬1¬1A B

B
(¬1¬1I)a

[¬1¬1A]a

D1 D2

A B

B

(¬2¬2E)a,b

[A]a [¬2A]b

D1 D2 D3

¬2¬2A B B

B
(¬2¬2I1)a

[¬2¬2A]a

D1 D2

A B

B
(¬2¬2I2)a

[¬2¬2A]a

D1 D2

¬2A B

B

(¬3¬3E)a

[A]a

D1 D2 D3

¬3¬3A ¬3A B

B
(¬3¬3I1)a

[¬3¬3A]a

D1 D2

A B

B
(¬3¬3I2)a,b

[¬3A]a [¬3¬3A]b

D1 D2

B B

B

(¬4¬4I)a

[¬4¬4A]a

D
B

B

(¬5¬5E1)

D1 D2

¬5¬5A ¬5A

B
(¬5¬5E2)a

[¬5¬5A]a

D1 D2

A B

B
(¬5¬5I)a,b

[¬5A]a [¬5¬5A]b

D1 D2 D3

A B B

B
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(¬6¬6E1)

D1 D2 D3

¬6¬6A ¬6A A

B
(¬6¬6E2)a,b

[A]a [¬6A]b

D1 D2 D3

¬6¬6A B B

B

(¬6¬6I1)a,b

[¬6A]a [¬6¬6A]b

D1 D2 D3

A B B

B
(¬6¬6I2)a,b

[A]a [¬6¬6A]b

D1 D2 D3

¬6A B B

B

(¬7¬7E1)

D1 D2

¬7¬7A ¬7A

B
(¬7¬7I)a,b

[¬7A]a [¬7¬7A]b

D1 D2

B B

B

(¬8¬8E)

D1 D2 D3

¬8¬8A ¬8A A

B
(¬8¬8I1)a,b

[A]a [¬8¬8A]b

D1 D2

B B

B
(¬8¬8I2)a,b

[¬8A]a [¬8¬8A]b

D1 D2

B B

B

(¬9¬9E1)a

[A]a

D1 D2

¬9¬9A B

B
(¬9¬9E2)a

[¬9A]a

D1 D2

¬9¬9A B

B
(¬9¬9I)a

[¬9¬9A]a

D1 D2 D3

A ¬9A B

B

(¬10¬10E)a

[¬10A]a

D1 D2

¬10¬10A B

B
(¬10¬10I)a

[¬10¬10A]a

D1 D2

¬10A B

B

(¬11¬11E1)a

[¬11A]a

D1 D2 D3

¬11¬11A A B

B
(¬11¬11E2)a

[A]a

D1 D2 D3

¬11¬11A ¬11A B

B

(¬11¬11I1)a,b,c

[A]a [¬11A]b [¬11¬11A]c

D1 D2 D3

B B B

B
(¬11¬11I2)a,b,c

[¬11¬11A]c

D1 D2 D3

A ¬11A B

B

(¬12¬12I1)a

[¬12A]a

D1 D2 D3

¬12¬12A A B

B
(¬12¬12I2)a,b

[A]a [¬12¬12A]b

D1 D2

B B

B
(¬12¬12I1)a

[¬12¬12A]a

D1 D2

¬12A B

B

(¬13¬13E)
¬13¬13A

B

(¬14¬14E1)

D1 D2

¬14¬14A A

B
(¬14¬14E2)a

[¬14A]a

D1 D2

¬14¬14A B

B
(¬14¬14I)a

[A]a [¬14¬14A]b

D1 D2 D3

¬14A B B

B
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(¬15¬15E1)

D1 D2

¬15¬15A A

B
(¬15¬15E2)

D1 D2

¬15¬15A ¬15A

B
(¬15¬15I)a,b,c

[A]a [¬15A]b [¬15¬15A]c

D1 D2 D3

B B B

B

(¬16¬16E)

D1 D2

¬16¬16A A

B
(¬16¬16I)a,b

[A]a [¬16¬16A]b

D1 D2

B B

B

General introduction and elimination rules for three-valued negations, the case of Ki
3, where

i ∈ {1, 2, 3, 4}:

(EFQ)

D1 D2

¬iA A

B

(¬1¬1E)a

[A]a

D1 D2

¬1¬1A B

B
(¬1¬1I)a

[¬1¬1A]a

D1 D2

A B

B
(¬2¬2I)a,b

[¬2A]a [¬2¬2A]b

D1 D2

B B

B

(¬3¬3E)a

D1

¬3¬3A

B
(¬4¬4E)

D1 D2

¬4¬4A A

B
(¬4¬4I)a,b,c

[A]a [¬4A]a [¬4¬4A]c

D1 D2 D3

B B B

B

General introduction and elimination rules for three-valued negations, the case of LPi, where
i ∈ {1, 2, 3, 4}:

(EM)a,b

[A]a [¬qA]b

D1 D2

B B

B

(¬1¬1E)a

[A]a

D1 D2

¬1¬1A B

B
(¬1¬1I)a

[¬1¬1A]a

D1 D2

A B

B
(¬2¬2I)a

[¬2¬2A]a

D1

B

B

(¬3¬3E)

D1 D2

¬3¬3A ¬3A

B
(¬4¬4E)

D1 D2 D3

¬4¬4A ¬4A A

B
(¬4¬4I)a,b

[A]a [¬4¬4A]b

D1 D2

B B

B

3.6.1 Natural deduction for other three-valued logics

Let us begin with the adaptation of correspondence analysis for additional three-valued logics taken
from Omori and Wansing’s research. The adaptation is based on the observation that Theorems 76
and 80 hold for these additional logics as well; their proofs even do not need any changes. All crucial
properties for their proof properties of the negation in question hold for all three-valued negations
described in [141].

Let us write Ki
3¬, 1 6 i 6 4, LPi

¬, 1 6 i 6 4, and FDEi
¬, 1 6 i 6 16, for the negation fragments

of the logics Ki
3, 1 6 i 6 4, LPi, 1 6 i 6 4, and FDEi, 1 6 i 6 16. Let us write K

i(})m
3¬ , 1 6 i 6 4,

LPi(})m
¬ , 1 6 i 6 4, and FDEi(})m

¬ , 1 6 i 6 16, for the extensions of the above-mentioned negation
fragments by n-ary connectives }1, . . . ,}m, where m > 0.
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Theorem 108. Let L be LPi(})m
¬ , 1 6 i 6 4. Then:

(1) f}
(
〈t, h, f〉

)
= 0 iff R}

(
〈t, h, f〉0

)
is sound in L.

(2) f}
(
〈t, h, f〉

)
= 1/2 iff both R}

(
〈t, h, f〉1/2

)
and R¬}

(
〈t, h, f〉1/2

)
are sound in L.

(3) f}
(
〈t, h, f〉

)
= 1 iff R}

(
〈t, h, f〉1

)
is sound in L.

Proof. The proof coincides with the proof of Theorem 76.

Theorem 109. Let L be K
i(})m
3¬ , 1 6 i 6 4. Then:

(1) f}
(
〈t, h, f〉

)
= 0 iff R̃}

(
〈t, h, f〉0

)
is sound in L.

(2) f}
(
〈t, h, f〉

)
= 1/2 iff both R̃}

(
〈t, h, f〉1/2

)
and R̃¬}

(
〈t, h, f〉1/2

)
are sound in L.

(3) f}
(
〈t, h, f〉

)
= 1 iff R̃}

(
〈t, h, f〉1

)
is sound in L.

Proof. The proof coincides with the proof of Theorem 80.

Theorem 110 (Soundness). Let L ∈ {K3¬
i(})m ,LP¬

i(})m}. Let Γ ⊆ F¬
(})m

and A ∈ F¬
(})m

. Then
Γ `L A implies Γ |=L A.

Proof. By induction on the length of the derivation. Use Theorems 108 and 109 and the fact that
the general introduction/elimination rules for negations are sound (which can be established by an
easy check).

As for completeness, it is fully analogous to the cases of the logics LP(})m
¬ , DG

(})m
3¬ , G

(})m
3¬ , and

K
(})m
3¬ . Let us just give one remark: the notions of theories should be adapted for new logics (except

the logic K
3(})m
3¬ , it needs a K

(})m
3¬ -theory from Definition 85).

Definition 111. An LP(})m
¬ -theory Γ (see Definition 84) is said to be an LP2(})m

¬ -theory iff it satisfies
the following condition, for each A ∈ F¬

(})m
:

• ¬¬A ∈ Γ.

Definition 112. An LP(})m
¬ -theory Γ (see Definition 84) is said to be an LP4(})m

¬ -theory iff it satisfies
the following condition, for each A ∈ F¬

(})m
:

• A ∈ Γ or ¬¬A ∈ Γ.

Definition 113. An K
(})m
3¬ -theory Γ (see Definition 85) is said to be an K

4(})m
3¬ -theory iff it satisfies

the following condition, for each A ∈ F¬
(})m

:

• A ∈ Γ or ¬A ∈ Γ or ¬¬A ∈ Γ.

Lemma 114. Every K
4(})m
3¬ -theory Γ satisfies the following condition, for each A ∈ F(})m :

• A 6∈ Γ or ¬¬A 6∈ Γ.

Proof. Similarly to Lemma 86, assume that the condition does not hold and using the rule (¬4¬4E)
obtain a contradiction.

Lemma 115. Every K
3(})m
3¬ -theory Γ satisfies the following condition, for each α ∈ F(})m :

• ¬¬A 6∈ Γ.

Proof. Similarly to Lemma 86, assume that the condition does not hold and using the rule (¬3¬3E)
obtain a contradiction.
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Theorem 116 (Completeness). Let L ∈ {Ki(})m
3¬ ,LPi(})m

¬ }. Let Γ ⊆ F¬
(})m

and A ∈ F¬
(})m

. Then
Γ |=L A implies Γ `L A.

Proof. Similarly to Theorem 6, using the above described definitions and lemmas.

As for the normalisation proof, it is fully analogous to the cases of the logics LP(})m
¬ , DG

(})m
3¬ ,

G
(})m
3¬ , and K

(})m
3¬ . Fortunately, the rules for n-ary connectives are the same, the only minor differ-

ences are connected with the rules for negations.

Theorem 117. Let L ∈ {Ki
3¬,LPi

¬,K
i(})m
3¬ ,LPi(})m

¬ }, 1 6 i 6 4. Any deduction in L can be
converted into a deduction in normal form.

Proof. Similarly to Theorem 100.

Theorem 118. Let L ∈ {Ki
3¬,LPi

¬,K
i(})m
3¬ ,LPi(})m

¬ }, 1 6 i 6 4. Deductions in normal forms in L
have the negation subformula property.

Proof. Similarly to Theorem 104.

3.6.2 Sequent calculi for other three-valued logics

Below is the list of the rules and axioms for negations for the logics LPi(})m
¬ , 1 6 i 6 4 (all the calculi

have the axiom A⇒ A13, and the rule (EM⇒):

(¬1¬1 ⇒)
A,Γ⇒ ∆

¬1¬1A,Γ⇒ ∆
(⇒ ¬1¬1)

Γ⇒ ∆, A

Γ⇒ ∆,¬1¬1A
(⇒ ¬2¬2)

Γ⇒ ∆

Γ⇒ ∆,¬2¬2A

(¬3¬3 ⇒)
Γ⇒ ∆,¬3A

¬3¬3A,Γ⇒ ∆
(¬4¬4 ⇒)

Γ⇒ ∆, A Γ⇒ ∆,¬4A

¬4¬4A,Γ⇒ ∆
(⇒ ¬4¬4)

A,Γ⇒ ∆

Γ⇒ ∆,¬4¬4A

Below is the list of the rules and axioms for negations for the logics K
i(})m
3¬ , 1 6 i 6 4 (all the

calculi have the axioms A⇒ A14, and the rule (⇒EFQ):

(¬1¬1 ⇒)
A,Γ⇒ ∆

¬1¬1A,Γ⇒ ∆
(⇒ ¬1¬1)

Γ⇒ ∆, A

Γ⇒ ∆,¬1¬1A
(⇒ ¬2¬2)

¬2A,Γ⇒ ∆

Γ⇒ ∆,¬2¬2A

(¬3¬3)
Γ⇒ ∆

¬3¬3A,Γ⇒ ∆
(¬4¬4 ⇒)

Γ⇒ ∆, A

¬4¬4A,Γ⇒ ∆
(⇒ ¬4¬4)

A,Γ⇒ ∆ ¬4A,Π⇒ Σ

¬4¬4A,Γ,Π⇒ ∆,Σ

The rules for } were listed in Section 3.5.

Theorem 119. Let L ∈ {LPi(})m
¬ ,K

i(})m
3¬ }, 1 6 i 6 4. Let Γ ⊆ F¬

(})m
and A ∈ F¬

(})m
. Then:

(1) Γ `NDL
A iff `SCL

Γ⇒ A.

(2) `SCL
Γ⇒ A iff Γ |=L A.

Proof. (1) By induction on the height of the derivation. (2) Follows from (1) and Theorem 116
(soundness and completeness of the natural deduction systems).

In Chapter 4, we provide a Hintikka-style completeness proof for modal many-valued logics,
including those that are modal extensions of the many-valued logics mentioned in Theorem 119, as
a consequence, we obtain cut admissibility for the logics in question.

13It can be replaced by p⇒ p and ¬ip⇒ ¬ip, for any propositional variable p.
14As in the previous case, it can be replaced by p⇒ p and ¬ip⇒ ¬ip, for any propositional variable p.
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3.6.3 Sequent calculi for four-valued logics

As for the four-valued logics FDEi(})m
¬ , 1 6 i 6 16, we will apply correspondence analysis to them

in a different order: first sequent calculi and then natural deduction. The reason for such decision is
as follows: we will use Kooi and Tamminga’s [97] sequent calculus for FDE1(})m

¬ , that is FDE(})m
¬

(recall that ¬1 is the negation of FDE). We will show that their results can be easily generalised
to the other fifteen four-valued logics. Then we convert these results into the natural deduction
framework and prove the normalisation theorem.

Let us introduce the following lemmas from [97] which follow from the definition of the entailment
relation in FDE(})m

¬ and the definition of its negation.

Lemma 120. [97, Lemma 1] Let Γ and ∆ be finite multisets of formulas, and A be a formula. Then:

Γ |= ∆, A iff for every ϑ such that 1 ∈ ϑ(Γ) and 1 6∈ ϑ(∆) it holds that 1 ∈ ϑ(A),

Γ, A |= ∆ iff for every ϑ such that 1 ∈ ϑ(Γ) and 1 6∈ ϑ(∆) it holds that 1 6∈ ϑ(A)

Lemma 121. [97, Lemma 2] Let A be a formula and ϑ be a valuation. Then:

ϑ(A) = n iff 1 6∈ ϑ(A) and 1 6∈ ϑ(¬A),

ϑ(A) = 0 iff 1 6∈ ϑ(A) and 1 ∈ ϑ(¬A),

ϑ(A) = 1 iff 1 ∈ ϑ(A) and 1 6∈ ϑ(¬A),

ϑ(A) = b iff 1 ∈ ϑ(A) and 1 ∈ ϑ(¬A).

Let us make the following important observation which is a key to the generalisation of Kooi and
Tamminga’s results.

Lemma 122. The statements of Lemmas 120 and 121 hold not only for FDE(})m
¬ , but for FDEi(})m

¬
as well, for any 1 6 i 6 16.

Proof. Follows from the definition of the entailment relation in FDEi(})m
¬ , 1 6 i 6 16, and the

definition of its negation ¬i.

Definition 123. [97, Definition 1] Let Γ and ∆ be finite multisets of formulas, A be a formula,
z ∈ {1, b, n, 0}. Then A|+z and A|−z are defined as follows:

A|+z (Γ⇒ ∆) =


Γ, A⇒ ∆ if z ∈ {n, 0},

Γ⇒ ∆, A otherwise
A|−z (Γ⇒ ∆) =


Γ,¬A⇒ ∆ if z ∈ {n, 1},

Γ⇒ ∆,¬A otherwise

Lemma 124. [97, Lemma 3] Let Γ and ∆ be finite multisets of formulas, A be a formula, z ∈
{1, b, n, 0}. Then A|+z (Γ ⇒ ∆) and A|−z (Γ ⇒ ∆) are valid if and only if for every valuation ϑ such
that 1 ∈ ϑ(Γ) and 1 6∈ ϑ(∆), it holds that ϑ(A) = z.

As Kooi and Tamminga [97] note, this Lemma follows from Lemmas 120 and 121. But it also
can be generalised for the other fifteen logics.

Lemma 125. The statement of Lemma 124 holds not only for FDE(})m
¬ , but for FDEi(})m

¬ as well,
for any 1 6 i 6 16.

Proof. Follows from Lemma 122.

Definition 126. [97, Definition 2] Let } be an n-ary operator and let f}(x1, . . . , xn) = y be a truth
table entry. Then R}+

x1,...,xn,y and R}−x1,...,xn,y are the following sequent rules:
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R}+
x1,...,xn,y

A1|+x1
(Γ⇒ ∆) A1|−x1

(Γ⇒ ∆) . . . An|+xn
(Γ⇒ ∆) An|−xn

(Γ⇒ ∆)

}(A1, . . . , An)|+y (Γ⇒ ∆)

R}−x1,...,xn,y

A1|+x1
(Γ⇒ ∆) A1|−x1

(Γ⇒ ∆) . . . An|+xn
(Γ⇒ ∆) An|−xn

(Γ⇒ ∆)

}(A1, . . . , An)|−y (Γ⇒ ∆)

Theorem 127. [97, Theorem 1]
f}(x1, . . . , xn) = y iff both R}+

x1,...,xn,y and R}−x1,...,xn,y are sound in FDE(})m
¬ .

Theorem 128. Let 1 6 i 6 16.
f}(x1, . . . , xn) = y iff both R}+

x1,...,xn,y and R}−x1,...,xn,y are sound in FDE1(})m
¬ .

Proof. Similarly to [97, Theorem 1] and Theorems 76 and 80, using Lemma 125.

Kooi and Tamminga [97] consider the following sequent calculus for the negation fragment of
FDE (sequents are built from multisets of formulas). It has the following axiom:

A,Γ⇒ ∆, A

The structural rules are as follows: contraction and weakening15. The logical rules are as follows:
(¬¬ ⇒) and (⇒ ¬¬). This system has no cut rule.

The sequent calculus for FDE(})m
¬ is obtained from the sequent calculus for the negation fragment

of FDE by adding the rules R}t+
x1,...,xn,y and R}t−

x1,...,xn,y for each }t, where 1 6 t 6 m and m > 0.
Sequent rules for the other negations can be obtained from Omori and Wansing’s [141] natural

deduction rules for negations (or their general introduction and elimination versions). These sequents
rules form sequent calculi for FDEi

¬, 1 6 i 6 16, their extensions by the rules R}t+
x1,...,xn,y and R

}t−
x1,...,xn,y

for each }t, where 1 6 t 6 m and m > 0, form sequent calculi for FDEi(})m
¬ , for any 1 6 i 6 16.

Below is a list of the rules and axioms for the negations:

(¬1¬1 ⇒)
A,Γ⇒ ∆

¬1¬1A,Γ⇒ ∆
(⇒ ¬1¬1)

Γ⇒ ∆, A

Γ⇒ ∆,¬1¬1A

(¬2¬2 ⇒)
A,Γ⇒ ∆ ¬2A,Π⇒ Σ

¬2¬2A,Γ,Π⇒ ∆,Σ
(⇒ ¬2¬2)

Γ⇒ ∆, A

Γ⇒ ∆,¬2¬2A
(⇒ ¬2¬∗2)

Γ⇒ ∆,¬2A

Γ⇒ ∆,¬2¬2A

(¬3¬3 ⇒)
A,Γ⇒ ∆ Π⇒ Σ,¬3A

¬3¬3A,Γ,Π⇒ ∆,Σ
(⇒ ¬3¬3)

Γ⇒ ∆, A

Γ⇒ ∆,¬3¬3A
(⇒ ¬3¬∗3)

¬3A,Γ⇒ ∆

Γ⇒ ∆,¬3¬3A

(¬4¬4)
Γ⇒ ∆

Γ⇒ ∆,¬4¬4A

(¬5¬5 ⇒)
A,Γ⇒ ∆

¬5¬5A,Γ⇒ ∆
(¬5¬5 ⇒∗)

Γ⇒ ∆,¬5A

¬5¬5A,Γ⇒ ∆
(⇒ ¬5¬5)

Γ⇒ ∆, A ¬5A,Π⇒ Σ

Γ,Π⇒ ∆,Σ,¬5¬5A

(¬6¬6 ⇒)
Γ⇒ ∆, A Π⇒ Σ,¬6A

¬6¬6A,Γ,Π⇒ ∆,Σ
(¬6¬6 ⇒∗)

A,Γ⇒ ∆, ¬6A,Π⇒ Σ

¬6¬6A,Γ,Π⇒ ∆,Σ

(⇒ ¬6¬6)
Γ⇒ ∆, A ¬6A,Π⇒ Σ

Γ,Π⇒ ∆,Σ,¬6¬6A
(⇒ ¬6¬∗6)

Γ⇒ ∆,¬6A A,Π⇒ Σ

Γ,Π⇒ ∆,Σ,¬6¬6A

(¬7¬7 ⇒)
Γ⇒ ∆,¬7A

¬7¬7A,Γ⇒ ∆
(⇒ ¬7¬7)

¬7A,Γ⇒ ∆

Γ⇒ ∆,¬7¬7A

15Kooi and Tamminga postulate weakening, although they notice that this rule is not necessary due to the axiom
A,Γ⇒ ∆, A. This rule would be necessary if this axiom had the following form: A⇒ A.
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(¬8¬8 ⇒)
Γ⇒ ∆, A Π⇒ Σ,¬8A

¬8¬8A,Γ,Π⇒ ∆,Σ
(⇒ ¬8¬8)

A,Γ⇒ ∆

Γ⇒ ∆,¬8¬8A
(⇒ ¬8¬∗8)

¬8A,Γ⇒ ∆

Γ⇒ ∆,¬8¬8A

(¬9¬9 ⇒)
A,Γ⇒ ∆

¬9¬9A,Γ⇒ ∆
(¬9¬9 ⇒∗)

¬9A,Γ⇒ ∆

¬9¬9A,Γ⇒ ∆
(⇒ ¬9¬9)

Γ⇒ ∆, A Π⇒ Σ,¬9A

Γ,Π⇒ ∆,Σ,¬9¬9A

(¬10¬10 ⇒)
¬10A,Γ⇒ ∆

¬10¬10A,Γ⇒ ∆
(⇒ ¬10¬10)

Γ⇒ ∆,¬10A

Γ⇒ ∆,¬10¬10A

(¬11¬11 ⇒)
¬11A,Γ⇒ ∆ Π⇒ Σ, A

¬11¬11A,Γ,Π⇒ ∆,Σ
(¬11¬11 ⇒∗)

A,Γ⇒ ∆ Π⇒ Σ,¬11A

¬11¬11A,Γ,Π⇒ ∆,Σ

(⇒ ¬11¬11)
A,Γ⇒ ∆ ¬11A,Π⇒ Σ

Γ,Π⇒ ∆,Σ,¬11¬11A
(⇒ ¬11¬∗11)

Γ⇒ ∆, A Π⇒ Σ,¬11A

Γ,Π⇒ ∆,Σ,¬11¬11A

(¬12¬12 ⇒)
¬12A,Γ⇒ ∆ Π⇒ Σ, A

¬12¬12A,Γ,Π⇒ ∆,Σ
(⇒ ¬12¬12)

A,Γ⇒ ∆

Γ⇒ ∆,¬12¬12A
(⇒ ¬12¬12)

Γ⇒ ∆,¬12A

Γ⇒ ∆,¬12¬12A

(¬13¬13)
Γ⇒ ∆

¬13¬13A,Γ⇒ ∆

(¬14¬14 ⇒)
Γ⇒ ∆, A

¬14¬14A,Γ⇒ ∆
(¬14¬14 ⇒∗)

¬14A,Γ⇒ ∆

¬14¬14A,Γ⇒ ∆
(⇒ ¬14¬14)

Γ⇒ ∆,¬14A A,Π⇒ Σ

Γ,Π⇒ ∆,Σ,¬14¬14A

(¬15¬15 ⇒)
Γ⇒ ∆, A

¬15¬15A,Γ⇒ ∆
(¬15¬15 ⇒∗)

Γ⇒ ∆,¬15A

¬15¬15A,Γ⇒ ∆
(⇒ ¬15¬15)

A,Γ⇒ ∆ ¬15A,Π⇒ Σ

Γ,Π⇒ ∆,Σ,¬15¬15A

(¬16¬16 ⇒)
Γ⇒ ∆, A

¬16¬16A,Γ⇒ ∆
(⇒ ¬16¬16)

A,Γ⇒ ∆

Γ⇒ ∆,¬16¬16A

Corollary 129 (Adequacy). Let L be FDEi(})m
¬ , for any 1 6 i 6 16. For any finite multisets of

formulas Γ and ∆, Γ |=L ∆ iff `L Γ⇒ ∆.

Proof. For the case i = 1 this theorem is proven in [97, Theorems 1, 2]. The other cases are considered
similarly; when we consider modal extensions of these four-valued logics, we will give some tips for
the completeness proof of the propositional case as well (see Theorem 143).

The sequent rules for an n-ary connective } can be formulated in Segerberg’s notation as follows:

(⇒FDE
〈t,b,n,f〉1 })

{Γ⇒ ∆, Ai}† {¬Ai,Γ⇒ ∆}† {Γ⇒ ∆, Aj}§ {Γ⇒ ∆,¬Aj}§ {Ak,Γ⇒ ∆}‡ {¬Ak,Γ⇒ ∆}‡ {Al,Γ⇒ ∆}∗ {Γ⇒ ∆,¬Al}∗

Γ⇒ ∆,}(A1, . . . , An)
† for each i ∈ t, § for each j ∈ b, ‡ for each k ∈ n, ∗ for each l ∈ f.

(¬}⇒FDE
〈t,b,n,f〉1)

{Γ⇒ ∆, Ai}† {¬Ai,Γ⇒ ∆}† {Γ⇒ ∆, Aj}§ {Γ⇒ ∆,¬Aj}§ {Ak,Γ⇒ ∆}‡ {¬Ak,Γ⇒ ∆}‡ {Al,Γ⇒ ∆}∗ {Γ⇒ ∆,¬Al}∗

¬}(A1, . . . , An),Γ⇒ ∆
† for each i ∈ t, § for each j ∈ b, ‡ for each k ∈ n, ∗ for each l ∈ f.

(⇒FDE
〈t,b,n,f〉b })

{Γ⇒ ∆, Ai}† {¬Ai,Γ⇒ ∆}† {Γ⇒ ∆, Aj}§ {Γ⇒ ∆,¬Aj}§ {Ak,Γ⇒ ∆}‡ {¬Ak,Γ⇒ ∆}‡ {Al,Γ⇒ ∆}∗ {Γ⇒ ∆,¬Al}∗

Γ⇒ ∆,}(A1, . . . , An)
† for each i ∈ t, § for each j ∈ b, ‡ for each k ∈ n, ∗ for each l ∈ f.

(⇒FDE
〈t,b,n,f〉b ¬})

{Γ⇒ ∆, Ai}† {¬Ai,Γ⇒ ∆}† {Γ⇒ ∆, Aj}§ {Γ⇒ ∆,¬Aj}§ {Ak,Γ⇒ ∆}‡ {¬Ak,Γ⇒ ∆}‡ {Al,Γ⇒ ∆}∗ {Γ⇒ ∆,¬Al}∗

Γ⇒ ∆,¬}(A1, . . . , An)
† for each i ∈ t, § for each j ∈ b, ‡ for each k ∈ n, ∗ for each l ∈ f.
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(}⇒FDE
〈t,b,n,f〉n)

{Γ⇒ ∆, Ai}† {¬Ai,Γ⇒ ∆}† {Γ⇒ ∆, Aj}§ {Γ⇒ ∆,¬Aj}§ {Ak,Γ⇒ ∆}‡ {¬Ak,Γ⇒ ∆}‡ {Al,Γ⇒ ∆}∗ {Γ⇒ ∆,¬Al}∗

}(A1, . . . , An),Γ⇒ ∆
† for each i ∈ t, § for each j ∈ b, ‡ for each k ∈ n, ∗ for each l ∈ f.

(¬}⇒FDE
〈t,b,n,f〉n)

{Γ⇒ ∆, Ai}† {¬Ai,Γ⇒ ∆}† {Γ⇒ ∆, Aj}§ {Γ⇒ ∆,¬Aj}§ {Ak,Γ⇒ ∆}‡ {¬Ak,Γ⇒ ∆}‡ {Al,Γ⇒ ∆}∗ {Γ⇒ ∆,¬Al}∗

¬}(A1, . . . , An),Γ⇒ ∆
† for each i ∈ t, § for each j ∈ b, ‡ for each k ∈ n, ∗ for each l ∈ f.

(}⇒FDE
〈t,b,n,f〉0)

{Γ⇒ ∆, Ai}† {¬Ai,Γ⇒ ∆}† {Γ⇒ ∆, Aj}§ {Γ⇒ ∆,¬Aj}§ {Ak,Γ⇒ ∆}‡ {¬Ak,Γ⇒ ∆}‡ {Al,Γ⇒ ∆}∗ {Γ⇒ ∆,¬Al}∗

}(A1, . . . , An),Γ⇒ ∆
† for each i ∈ t, § for each j ∈ b, ‡ for each k ∈ n, ∗ for each l ∈ f.

(⇒FDE
〈t,b,n,f〉0 ¬})

{Γ⇒ ∆, Ai}† {¬Ai,Γ⇒ ∆}† {Γ⇒ ∆, Aj}§ {Γ⇒ ∆,¬Aj}§ {Ak,Γ⇒ ∆}‡ {¬Ak,Γ⇒ ∆}‡ {Al,Γ⇒ ∆}∗ {Γ⇒ ∆,¬Al}∗

Γ⇒ ∆,¬}(A1, . . . , An)
† for each i ∈ t, § for each j ∈ b, ‡ for each k ∈ n, ∗ for each l ∈ f.

Let us present a constructive cut admissibility proof for FDE(})m
¬ . We use the strategy by

Metcalfe, Olivetti, and Gabbay [123] which we have already applied in Section 2.3.2. The notions
of principal formula, side formulas, parametric formulas, the length l(D) of a derivation D, and the
cut rank r(D) of a derivation D are given in Section 2.3.2. The complexity c(A) of A is defined as a
degree d(A) of A introduced in Definition 96.

Lemma 130 (Right reduction). Let D1 and D2 be derivations such that :

(1) D1 is a derivation of Γ⇒ ∆, A,

(2) D2 is a derivation of Aa,Θ⇒ Λ,

(3) r(D1) ≤ c(A) and r(D2) ≤ c(A),

(4) A is the principal formula of a logical rule in D1.

Then we can construct a derivation D0 of Γa,Θ⇒ Λ,∆a such that r(D0) ≤ c(A).

Proof. By induction on l(D2).
Basic case. Similar to the basic case from Lemma 105.
We have the following application of (Cut) on the left and its obvious transformation on the right:
Inductive case. We have different cases depending on the last rule applied in D2.
Case 1. The rule of the last application in D2 is (¬¬ ⇒). Similar to the case with this rule from

Lemma 105.
Case 2. The rule of the last application in D2 is (¬} ⇒FDE

〈t,b,n,f〉1). Subcase 2.1. A is principal in
D2 and A = ¬}(B1, . . . , Bn) = ¬}( ~B). Let us introduce the following abbreviations:

A1 = {Aa,Θ⇒ Λ, Bi}† {Aa,¬Bi,Θ⇒ Λ}†
A2 = {Aa,Θ⇒ Λ, Bj}§ {Aa,Θ⇒ Λ,¬Bj}§
A3 = {Aa, Bk,Θ⇒ Λ}‡ {Aa,¬Bk,Θ⇒ Λ}‡
A4 = {Aa, Bl,Θ⇒ Λ}∗ {Aa,Θ⇒ Λ,¬Bl}∗

† for each i ∈ t, § for each j ∈ b, ‡ for each k ∈ n, ∗ for each l ∈ f.

The last inference of D2 is as follows.
A1 A2 A3 A4

¬}(B1, . . . , Bn)a+1,Θ⇒ Λ
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The last inference of D1 is as follows (the rule (⇒FDE
〈t′,b′,n′,f′〉b ¬}) is applied):

{Γ⇒ ∆, Bi′}† {¬Bi′ ,Γ⇒ ∆}† {Γ⇒ ∆, Bj′}§ {Γ⇒ ∆,¬Bj′}§ {Bk′ ,Γ⇒ ∆}‡ {¬Bk′ ,Γ⇒ ∆}‡ {Bl′ ,Γ⇒ ∆}∗ {Γ⇒ ∆,¬Bl′}∗

Γ⇒ ∆,¬}(B1, . . . , Bn)
† for each i′ ∈ t′, § for each j′ ∈ b′, ‡ for each k′ ∈ n′, ∗ for each l′ ∈ f′.

We should obtain Γa+1,Θ⇒ ∆a+1,Λ. Recall that all the formulas

Bi,¬Bi, Bj,¬Bj, Bk,¬Bk, Bl,¬Bl, Bi′ ,¬Bi′ , Bj′ ,¬Bj′ , Bk′ ,¬Bk′ , Bl′ ,¬Bl′

are either subformulas or negations of subformulas of }( ~B) = }(B1, . . . , Bn). We need to have more
details about the other rules which are present in the system. Let us observe that this case can be
reformulated in the following way (the last step of D1 is on the left, the last step of D2 is on the
right):

X1 . . . Xn

Γ⇒ ∆, A

Y1 . . . Yn
Aa+1,Θ⇒ Λ

where X1, . . . , Xn and Y1, . . . , Yn are abbreviations for the following derivations, for any t, u ∈
{1, . . . , n}.

Xt =



[
Γ⇒ ∆, Bt

¬Bt,Γ⇒ ∆ iff t ∈ t′;[
Γ⇒ ∆, Bt

Γ⇒ ∆,¬Bt
iff t ∈ b′;

[
Bt,Γ⇒ ∆
¬Bt,Γ⇒ ∆

iff t ∈ n′;

[
Bt,Γ⇒ ∆
Γ⇒ ∆,¬Bt

iff t ∈ f′;

Yu =



[
Aa,Θ⇒ Λ, Bu

Aa,¬Bu,Θ⇒ Λ iff u ∈ t;[
Aa,Θ⇒ Λ, Bu

Aa,Θ⇒ Λ,¬Bu
iff u ∈ b;

[
Aa, Bu,Θ⇒ Λ
Aa,¬Bu,Θ⇒ Λ

iff u ∈ n;

[
Aa, Bu,Θ⇒ Λ
Aa,Θ⇒ Λ,¬Bu

iff u ∈ f;

As follows from these equalities and the soundness of our natural deduction systems, there is
s ∈ {1, . . . , n} such that Xs 6= Ys. Then the following combinations are possible (we present them in
the form of ordered pairs 〈Xs, Ys〉):

C1 =

〈[
Γ⇒ ∆, Bs

¬Bs,Γ⇒ ∆
,

[
Aa,Θ⇒ Λ, Bs

Aa,Θ⇒ Λ,¬Bs

〉
C2 =

〈[
Γ⇒ ∆, Bs

¬Bs,Γ⇒ ∆
,

[
Aa, Bs,Θ⇒ Λ
Aa,¬Bs,Θ⇒ Λ

〉
C3 =

〈 [
Γ⇒ ∆, Bs

¬Bs,Γ⇒ ∆
,

[
Aa, Bs,Θ⇒ Λ
Aa,Θ⇒ Λ,¬Bs

〉
C4 =

〈[
Γ⇒ ∆, Bs

Γ⇒ ∆,¬Bs
,

[
Aa,Θ⇒ Λ, Bs

Aa,¬Bs,Θ⇒ Λ

〉
C5 =

〈[
Γ⇒ ∆, Bs

Γ⇒ ∆,¬Bs
,

[
Aa, Bs,Θ⇒ Λ
Aa,¬Bs,Θ⇒ Λ

〉
C6 =

〈[
Γ⇒ ∆, Bs

Γ⇒ ∆,¬Bs
,

[
Aa, Bs,Θ⇒ Λ
Aa,Θ⇒ Λ,¬Bs

〉
C7 =

〈[
Bs,Γ⇒ ∆
¬Bs,Γ⇒ ∆

,

[
Aa,Θ⇒ Λ, Bs

Aa,¬Bs,Θ⇒ Λ

〉
C8 =

〈[
Bs,Γ⇒ ∆
¬Bs,Γ⇒ ∆

,

[
Aa,Θ⇒ Λ, Bs

Aa,Θ⇒ Λ,¬Bs

〉
C9 =

〈[
Bs,Γ⇒ ∆
¬Bs,Γ⇒ ∆

,

[
Aa, Bs,Θ⇒ Λ
Aa,Θ⇒ Λ,¬Bs

〉
C10 =

〈[
Bs,Γ⇒ ∆
Γ⇒ ∆,¬Bs

,

[
Aa,Θ⇒ Λ, Bs

Aa,¬Bs,Θ⇒ Λ

〉
C11 =

〈[
Bs,Γ⇒ ∆
Γ⇒ ∆,¬Bs

,

[
Aa,Θ⇒ Λ, Bs

Aa,Θ⇒ Λ,¬Bs

〉
C12 =

〈[
Bs,Γ⇒ ∆
Γ⇒ ∆,¬Bs

,

[
Aa, Bs,Θ⇒ Λ
Aa,¬Bs,Θ⇒ Λ

〉
Let us consider the case C1. The derivation D1 is as follows:

X1 . . . Xl−1 Γ⇒ ∆, Bs ¬Bs,Γ⇒ ∆ Xl+1 . . . Xn

Γ⇒ ∆, A
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The derivation D2 is as follows:
Y1 . . . Yl−1 Aa,Θ⇒ Λ, Bs Aa,Θ⇒ Λ,¬Bs Yl+1 . . . Yn

Aa+1,Θ⇒ Λ

We should obtain Γa+1,Θ ⇒ ∆a+1,Λ. Using the induction hypothesis, applying cut to the
formulas of lower complexity16, and using structural rules, we get the required result:

Γa+1,Θ⇒ ∆a+1,Λ,¬Bs ¬Bs,Γ
a+1,Θ⇒ ∆a+1,Λ

Γ2(a+1),Θ2 ⇒ ∆2(a+1),Λ2

Γa+1,Θ⇒ ∆a+1,Λ

The other cases are treated similarly.

Lemma 131 (Left reduction). Let D1 and D2 be derivations such that :

(1) D1 is a derivation of Γ⇒ ∆, Ai,

(2) D2 is a derivation of A,Θ⇒ Λ,

(3) r(D1) ≤ c(A) and r(D2) ≤ c(A).

Then we can construct a derivation D0 of Γ,Θi ⇒ Λi,∆ such that r(D0) ≤ c(A).

Proof. The proof is by induction on l(D1). Similarly to Lemma 130.

Theorem 132 (Constructive elimination of cuts). Let L = FDEi(})m
¬ , 1 6 i 6 16. If a derivation

D in SCL has an application of (Cut), then it can be transformed into a cut-free derivation D′.

Proof. Assume that a derivation D in SCL has at least one application of (Cut), i.e., r(D) > 0. The
proof proceeds by the double induction on 〈r(D), nr(D)〉, where nr(D) is the number of applications of
(Cut) in D. Consider an uppermost application of (Cut) in D with cut rank r(D). We apply Lemma
131 to its premises and decrease either r(D) or nr(D). Then we can use the inductive hypothesis.

3.6.4 Natural deduction for four-valued logics

Let us present now natural deduction systems for the four-valued logics FDEi(})m
¬ , 1 6 i 6 16, on

the basis of Kooi and Tamminga’s sequent calculi.
Let us adapt Kooi and Tamminga’s notation for the case of natural deduction.

Definition 133. For any formulas A and B, z ∈ {1, b, n, 0}, A|+z (B), A||+z (B), A|−z (B), and A||−z (B)
are defined as follows:

A|+z (B) =



[A]
D
B

if z ∈ {n, 0},

E
A

otherwise

A|−z (B) =



[¬A]
D
B

if z ∈ {n, 1},

E
¬A otherwise

A||+z (B) =



E
A

if z ∈ {n, 0},

[A]
D
B

otherwise

A||−z (B) =



E
¬A if z ∈ {n, 1},

[¬A]
D
B

otherwise

16Recall that due to our definition of the degree of formula, the complexity of }(B1, . . . , Bn) is lower than the degree
of ¬Bs, even if n = s = 1.
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Natural deduction versions of Kooi and Tamminga’s sequent rules for four-valued n-ary connec-
tives (nd stands for natural deduction) are as follows:

R}+nd
x1,...,xn,y

}(A1, . . . , An)||+y (B) A1|+x1
(B) A1|−x1

(B) . . . An|+xn
(B) An|−xn

(B)

B

R}−ndx1,...,xn,y

}(A1, . . . , An)||−y (B) A1|+x1
(B) A1|−x1

(B) . . . An|+xn
(B) An|−xn

(B)

B

The rules for negation were formulated above, as general introduction and elimination rules.
These rules can be formulated in Segerberg’s notation too, in the same style which we used for

three-valued logics.
Notation 134. Consider the set of natural numbers s = {1, . . . , n}. By a 4-partitioning of s we mean
an ordered quadruple 〈I, J,K, L〉 such that I ∪ J ∪ K ∪ L = s and I ∩ J ∩ K ∩ L = ∅. In what
follows, we are going to consider a partitioning of the following type: 〈t, b, n, f〉, where t = {i ∈ s |
v(Ai) = 1, Ai ∈ F(})m}, b = {j ∈ s | v(Aj) = b, Aj ∈ F(})m}, n = {k ∈ s | v(Ak) = n,Ak ∈ F(})m},
and f = {l ∈ s | v(Al) = 0, Al ∈ F(})m}.
Notation 135. The expression f}(x1, . . . , xn) = y, where x1, . . . , xn, y ∈ {1, n, b, 0}, means that if
v(A1) = x1, . . . , v(An) = xn, then v(}(A1, . . . , An)) = y, for each valuation v and all formulas
A1, . . . , An. The expression f}

(
〈t, b, n, f〉

)
= x, where x ∈ {1, b, n, 0}, means that if v(Ai) = 1 (for

each i ∈ t), v(Aj) = b (for each j ∈ b), v(Ak) = n (for each k ∈ n), and v(Al) = 0 (for each l ∈ f),
then v(}(A1, . . . , An)) = x, for each valuation v.

R}
(
〈t, b, n, f〉1

)a,b,c,d,e
[}(A1, . . . , An)]a [¬Ai]

b [A‡k]c [¬A‡k]d [A∗l ]
e

D1 D†2 D†3 D§4 D§5 D‡6 D‡7 D∗8 D∗9
B A†i B A§j ¬A

§
j B B B ¬A∗l

B
† for each i ∈ t, § for each j ∈ b, ‡ for each k ∈ n, ∗ for each l ∈ f.

R¬}
(
〈t, b, n, f〉1

)b,c,d,e
[¬Ai]

b [A‡k]c [¬A‡k]d [A∗l ]
e

D1 D†2 D†3 D§4 D§5 D‡6 D‡7 D∗8 D∗9
¬}(A1, . . . , An) A†i B A§j ¬A

§
j B B B ¬A∗l

B
† for each i ∈ t, § for each j ∈ b, ‡ for each k ∈ n, ∗ for each l ∈ f.

R}
(
〈t, b, n, f〉b

)a,b,c,d,e
[}(A1, . . . , An)]a [¬Ai]

b [A‡k]c [¬A‡k]d [A∗l ]
e

D1 D†2 D†3 D§4 D§5 D‡6 D‡7 D∗8 D∗9
B A†i B A§j ¬A

§
j B B B ¬A∗l

B
† for each i ∈ t, § for each j ∈ b, ‡ for each k ∈ n, ∗ for each l ∈ f.

R¬}
(
〈t, b, n, f〉b

)a,b,c,d,e
[¬}(A1, . . . , An)]a [¬Ai]

b [A‡k]c [¬A‡k]d [A∗l ]
e

D1 D†2 D†3 D§4 D§5 D‡6 D‡7 D∗8 D∗9
B A†i B A§j ¬A

§
j B B B ¬A∗l

B
† for each i ∈ t, § for each j ∈ b, ‡ for each k ∈ n, ∗ for each l ∈ f.

R}
(
〈t, b, n, f〉n

)b,c,d,e
[¬Ai]

b [A‡k]c [¬A‡k]d [A∗l ]
e

D1 D†2 D†3 D§4 D§5 D‡6 D‡7 D∗8 D∗9
}(A1, . . . , An) A†i B A§j ¬A

§
j B B B ¬A∗l

B
† for each i ∈ t, § for each j ∈ b, ‡ for each k ∈ n, ∗ for each l ∈ f.
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R¬}
(
〈t, b, n, f〉n

)b,c,d,e
[¬Ai]

b [A‡k]c [¬A‡k]d [A∗l ]
e

D1 D†2 D†3 D§4 D§5 D‡6 D‡7 D∗8 D∗9
¬}(A1, . . . , An) A†i B A§j ¬A

§
j B B B ¬A∗l

B
† for each i ∈ t, § for each j ∈ b, ‡ for each k ∈ n, ∗ for each l ∈ f.

R}
(
〈t, b, n, f〉0

)b,c,d,e
[¬Ai]

b [A‡k]c [¬A‡k]d [A∗l ]
e

D1 D†2 D†3 D§4 D§5 D‡6 D‡7 D∗8 D∗9
}(A1, . . . , An) A†i B A§j ¬A

§
j B B B ¬A∗l

B
† for each i ∈ t, § for each j ∈ b, ‡ for each k ∈ n, ∗ for each l ∈ f.

R¬}
(
〈t, b, n, f〉0

)a,b,c,d,e
[¬}(A1, . . . , An)]a [¬Ai]

b [A‡k]c [¬A‡k]d [A∗l ]
e

D1 D†2 D†3 D§4 D§5 D‡6 D‡7 D∗8 D∗9
B A†i B A§j ¬A

§
j B B B ¬A∗l

B
† for each i ∈ t, § for each j ∈ b, ‡ for each k ∈ n, ∗ for each l ∈ f.

Notation 136. In order to save space let us write}( ~A) for}(A1, . . . , An) (for any formulas A1, . . . , An)
and f}(~x) for f}(x1, . . . , xn) (for any truth values x1, . . . , xn).

Theorem 137. Let L be FDEi(})m
¬ . Let x ∈ {1, b, n, 0}, 1 6 i 6 16. Then:

• f}
(
〈t, b, n, f〉

)
= x iff both R}

(
〈t, b, n, f〉x

)
and R¬}

(
〈t, b, n, f〉x

)
are sound in L.

Proof. Similarly to Theorem 76.

Theorem 138. Let L be FDEi(})m
¬ , for any 1 6 i 6 16. For any set of formulas Γ and any formula

A, Γ `L A in the natural deduction formulation of L iff `L Γ⇒ A in the sequent formulation of L.

Proof. From ‘left to right’: by induction on the derivation in the natural deduction formulation of
L. From ‘right to left’: by induction on the derivation in the sequent formulation of L.

Corollary 139 (Adequacy). Let L be FDEi(})m
¬ , for any 1 6 i 6 16. Let Γ ⊆ F¬

(})m
and A ∈ F¬

(})m
.

Then Γ |=L A iff Γ `L A in the natural deduction formulation of L.

Proof. Follows from Theorems 129 and 138.
Another way to prove the Theorem is to give an argument analogous to the one used to establish

Theorem 94: one will need to use Theorem 137 and define the notion of a FDEi(})m
¬ -theorem. As an

example, we define it for FDE1(})m
¬ .

Let Γ ⊆ F¬
(})m

and A,B ∈ F¬
(})m

. Then Γ is said to be an FDE1(})m
¬ -theory iff the following

conditions are fulfilled:

• (ΓN) Γ 6= F¬
(})m

(non-triviality);

• (ΓCl) Γ ` A implies A ∈ Γ (closure under `);
• (Γ0

FDE) if f}(〈t, b, n, f〉) = 0, then for each for each i ∈ t, for each j ∈ b, and for each l ∈ f,

– Ai ∈ Γ, Aj,¬Aj ∈ Γ, ¬Al ∈ Γ implies ¬}(A1, . . . , An) ∈ Γ, or ¬Ai ∈ Γ, or for some k ∈ n,
Ak ∈ Γ or ¬Ak ∈ Γ, or Al ∈ Γ,

– }(A1, . . . , An) ∈ Γ, Ai ∈ Γ, Aj,¬Aj ∈ Γ, ¬Al ∈ Γ implies ¬Ai ∈ Γ, or for some k ∈ n,
Ak ∈ Γ or ¬Ak ∈ Γ, or Al ∈ Γ;

• (Γn
FDE) if f}(〈t, b, n, f〉) = n, then for each for each i ∈ t, for each j ∈ b, and for each l ∈ f,



3.6. OTHER THREE-VALUED LOGICS AND FOUR-VALUED ONES 115

– ¬}(A1, . . . , An) ∈ Γ, Ai ∈ Γ, Aj,¬Aj ∈ Γ, ¬Al ∈ Γ implies ¬Ai ∈ Γ, or for some k ∈ n,
Ak ∈ Γ or ¬Ak ∈ Γ, or Al ∈ Γ,

– }(A1, . . . , An) ∈ Γ, Ai ∈ Γ, Aj,¬Aj ∈ Γ, ¬Al ∈ Γ implies ¬Ai ∈ Γ, or for some k ∈ n,
Ak ∈ Γ or ¬Ak ∈ Γ, or Al ∈ Γ;

• (Γb
FDE) if f}(〈t, b, n, f〉) = b, then for each for each i ∈ t, for each j ∈ b, and for each l ∈ f,

– Ai ∈ Γ, Aj,¬Aj ∈ Γ, ¬Al ∈ Γ implies ¬}(A1, . . . , An) ∈ Γ, or ¬Ai ∈ Γ, or for some
k ∈ n,Ak ∈ Γ or ¬Ak ∈ Γ, or Al ∈ Γ,

– Ai ∈ Γ, Aj,¬Aj ∈ Γ, ¬Al ∈ Γ implies }(A1, . . . , An) ∈ Γ, or ¬Ai ∈ Γ, or for some k ∈ n,
Ak ∈ Γ or ¬Ak ∈ Γ, or Al ∈ Γ;

• (Γ1
FDE) if f}(〈t, b, n, f〉) = 1, then for each for each i ∈ t, for each j ∈ b, and for each l ∈ f,

– Ai ∈ Γ, Aj,¬Aj ∈ Γ, ¬Al ∈ Γ implies }(A1, . . . , An) ∈ Γ or ¬Ai ∈ Γ, or for some k ∈ n,
Ak ∈ Γ or ¬Ak ∈ Γ, or Al ∈ Γ,

– ¬}(A1, . . . , An) ∈ Γ, Ai ∈ Γ, Aj,¬Aj ∈ Γ, ¬Al ∈ Γ implies ¬Ai ∈ Γ, or for some k ∈ n,
Ak ∈ Γ or ¬Ak ∈ Γ, or Al ∈ Γ.

An interpretation function of A in Γ should be defined as follows:

e(A,Γ) =


1 iff A ∈ Γ,¬A 6∈ Γ;
b iff A ∈ Γ,¬A ∈ Γ;
n iff A 6∈ Γ,¬A 6∈ Γ;
0 iff A 6∈ Γ,¬A ∈ Γ.

The formulations and proofs of the required lemmas are similar to the formulations and proofs
of Lemmas 89, 91, and 92.

The proof of normalisation for four-valued logics is analogous to the proof for three-valued logics.
The notions of maximal formulas, degree of a formula, segment, length and degree of a segment,
maximal formula, normal form, and rank of a deduction are understood according to Definitions 95,
96, 51, 52, 53, and 55, respectively.

As an example, we prove normalisation for FDE1(})m
¬ = FDE(})m

¬ .
In the case of the negation fragment of FDE, we have one case with the maximal formula: the

maximal formula has the form ¬¬A; the rules (¬¬I) and (¬¬E) are applied. The same case appears
in LP and the reduction procedure is the same. In the case of the negation fragment of FDE, there
is also one case with the maximal segment produced by the rules (¬¬E) and (¬¬I). The same case
appears in LP and the permutation procedure is the same. Simplicity conversions and maximal
segments described in the second clause of Definition 51 are considered similarly to the case of LP.

In the case of the negation fragment of FDE extended by n-ary operators }1, . . . ,}m, we have
the following cases.

Maximal formulas. Case 1. Subcase 1.1. The maximal formula }( ~A) produced by applica-
tions of the rules R}

(
〈t, b, n, f〉0

)
and R}

(
〈t′, b′, n′, f′〉b

)
which we denote by <1 and <2, respectively.

[¬Ai]
b [A‡k]c [¬A‡k]d [A∗l ]

e

D†2 D†3 D§4 D§5 D‡6 D‡7 D∗8 D∗9
[}( ~A)]a A†i B A§j ¬A

§
j B B B ¬A∗l<b,c,d,e

1 B
H
C X<a,f,g,h,o

2 C
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where X stands for

[¬Ai′ ]
f [A[

k′ ]
g [¬A[

k′ ]
h [A?

l′ ]
o

E]
2 E]

3 E\
4 E\

5 E[
6 E[

7 E?
8 E?

9

A]
i′ C A\

j′ ¬A
\
j′ C C C ¬A?

l′

† for each i ∈ t, § for each j ∈ b, ‡ for each k ∈ n, ∗ for each l ∈ f; ] for each i′ ∈ t′, \ for each j′ ∈ b′,
[ for each k′ ∈ n′, ? for each l′ ∈ f′.

Recall that all the formulas

Ai,¬Ai, Aj,¬Aj, Ak,¬Ak, Al,¬Al, Ai′ ,¬Ai′ , Aj′ ,¬Aj′ , Ak′ ,¬Ak′ , Al′ ,¬Al′

are either subformulas or negations of subformulas of }( ~A) = }(A1, . . . , An). We need to have more
details about the other rules which are present in the system. Let us observe that this case can be
reformulated in the following way.

[}( ~A)]a X1 . . . Xn<b,c,d,e
1 B

H
C Y1 . . . Yn<a,f,g,h,o

2 C

where X1, . . . , Xn and Y1, . . . , Yn are abbreviations for the following derivations, for any t, u ∈
{1, . . . , n}.

Xt =



[¬At]
b

D2 D3

At B
iff t ∈ t;

D4 D5

At ¬At
iff t ∈ b;

[At]
c [¬At]

d

D6 D7

B B
iff t ∈ n;

[At]
e

D8 D9

B ¬At

iff t ∈ f;

Yu =



[¬Au]f

E2 E3

Au C
iff u ∈ t′;

E4 E5

Au ¬Au
iff u ∈ b′;

[Au]g [¬Au]h

E6 E7

C C
iff u ∈ n′;

[Au]o

E8 E9

C ¬Au

iff u ∈ f′.

As follows from these equalities and soundness of our natural deduction systems, there is s ∈
{1, . . . , n} such that Xs 6= Ys.

Then the following combinations are possible (we present them in the form of ordered pairs
〈Xs, Ys〉):
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C1 =

〈 [¬As]
b

D2 D3

As B
,
E4 E5

As ¬As

〉
C2 =

〈 [¬As]
b

D2 D3

As B
,

[As]
g [¬As]

h

E6 E7

C C

〉

C3 =

〈 [¬As]
b

D2 D3

As B
,

[As]
o

E8 E9

C ¬As

〉
C4 =

〈
D4 D5

As ¬As
,

[¬As]
f

E2 E3

As C

〉

C5 =

〈
D4 D5

As ¬As
,

[As]
g [¬As]

h

E6 E7

C C

〉
C6 =

〈
D4 D5

As ¬As
,

[Au]o

E8 E9

C ¬As

〉

C7 =

〈 [As]
c [¬As]

d

D6 D7

B B
,

[¬As]
f

E2 E3

As C

〉
C8 =

〈 [As]
c [¬As]

d

D6 D7

B B
,
E4 E5

As ¬As

〉

C9 =

〈 [As]
c [¬As]

d

D6 D7

B B
,

[As]
o

E8 E9

C ¬As

〉
C10 =

〈 [As]
o

D8 D9

B ¬As

,
[¬As]

f

E2 E3

As C

〉

C11 =

〈 [As]
o

D8 D9

B ¬As

,
E4 E5

As ¬As

〉
C12 =

〈 [As]
o

D8 D9

B ¬As

,
[As]

g [¬As]
h

E6 E7

C C

〉

Let us consider the case C1.

[}( ~A)]a X1 . . . Xs−1

D2

As

[¬As]
b

D3

B Xs+1 . . . Xn

B
H
C Y1 . . . Ys−1

E4

As

E5

¬As Ys+1 . . . Yn<b,c,d,e
1 <a,f,g,h,o

2 C

Then we can introduce the following reduction procedure:

E5

¬As

D3

B
H
C Y1 . . . Ys−1

E4

As

E5

¬As Ys+1 . . . Yn<a,f,g,h,o
2 C

The other cases C2, . . . , C12 are considered similarly.
The following subcases are considered similarly.
Subcase 1.2. The maximal formula }( ~A) is produced by applications of R}

(
〈t, b, n, f〉n

)
and

R}
(
〈t′, b′, n′, f′〉b

)
.

Subcase 1.3. The maximal formula }( ~A) is produced by R}
(
〈t, b, n, f〉0

)
and R}

(
〈t′, b′, n′, f′〉1

)
.

Subcase 1.4. The maximal formula }( ~A) is produced by R}
(
〈t, b, n, f〉n

)
and R}

(
〈t′, b′, n′, f′〉1

)
.

Subcase 1.5. The maximal formula ¬}( ~A) is produced by R¬}
(
〈t, b, n, f〉1

)
and R¬}

(
〈t′, b′, n′, f′〉b

)
.

Subcase 1.6. The maximal formula ¬}( ~A) is produced by R¬}
(
〈t, b, n, f〉n

)
and R¬}

(
〈t′, b′, n′, f′〉b

)
.

Subcase 1.7. The maximal formula ¬}( ~A) is produced by R¬}
(
〈t, b, n, f〉1

)
and R¬}

(
〈t′, b′, n′, f′〉0

)
.

Subcase 1.8. The maximal formula ¬}( ~A) is produced by R¬}
(
〈t, b, n, f〉n

)
and R¬}

(
〈t′, b′, n′, f′〉0

)
.



118 CHAPTER 3. PROOF SYSTEMS FOR SELECTED MANY-VALUED LOGICS

Maximal segments. Case 2. The maximal segment with the formula ¬¬B is produced by
applications of any rule for } and (¬¬E) denoted as <1 and <2, respectively.

[¬A†i ]b [A‡k]c [¬A‡k]d [A∗l ]
e

D†2 D†3 D§4 D§5 D‡6 D‡7 D∗8 D∗9
X A†i ¬¬B A§j ¬A

§
j ¬¬B ¬¬B ¬¬B ¬A∗l<a,b,c,d,e

1 ¬¬B

[B]f

D1

C<f
2 C

† for each i ∈ t, § for each j ∈ b, ‡ for each k ∈ n, ∗ for each l ∈ f, where X stands for one of the
following options depending on which rule for } we have:

[}( ~A)]a [¬}( ~A)]a

E1 E2 E3 E4

¬¬B ¬¬B }( ~A) ¬}( ~A)

The permutation procedure is changing the order of applications of the rules. Let us introduce
the following abbreviations A1,A2,A3,A4:

[¬A†i ]b

D†3
¬¬B

[B]f

D1

C
A1 = <f

2 C

[A‡k]c

D‡6
¬¬B

[B]f

D1

C
A2 = <f

2 C

[¬A‡k]d

D‡7
¬¬B

[B]f

D1

C
A3 = <f

2 C

[A∗l ]
e

D∗8
¬¬B

[B]f

D1

C
A4 = <f

2 C

Then we have

D†2 D§4 D§5 D∗9
Y A†i A1 A§j ¬A

§
j A2 A3 A4 ¬A∗l<a,b,c,d,e

1 C

† for each i ∈ t, § for each j ∈ b, ‡ for each k ∈ n, ∗ for each l ∈ f, where Y stands for one of the
following options depending on which rule for } we have:

[}( ~A)]a

E1

¬¬B

[B]f

D1

C<f
2 C

[¬}( ~A)]a

E2

¬¬B

[B]f

D1

C<f
2 C

E3

}( ~A)

E4

¬}( ~A)

Case 3. The maximal segment with the formula }1( ~B) (or the formula ¬}1( ~B)) is produced
by applications of a rule for }1 and a rule for }2 (}1 and }2 can be distinct operators, but can
coincide). This case is considered similarly to the previous one: the permutation procedure is to
change the order of applications of the rules.

As for the cases of the other fifteen negations, all the maximal segments that can be produced by
the rules for these negations and the rules for n-ary operators are treated in an analogous way: the
permutation procedure is to change the order of applications of the rules. The cases with maximal
formulas are treated similarly to the cases of FDE, LP, and K3.
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Theorem 140. Let L ∈ {FDEi
¬,FDEi(})m

¬ }, 1 6 i 6 16. Any deduction in L can be converted into
a deduction in normal form.

Proof. Similarly to Theorem 100.

Theorem 141. Let L ∈ {FDEi
¬,FDEi(})m

¬ }, 1 6 i 6 16. Deductions in normal forms in L have
the negation subformula property.

Proof. Similarly to Theorem 104.
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Chapter 4

Proof systems for selected many-valued
modal logics

4.1 Preliminaries and semantics

This section is devoted to the combination of many-valued logics with modal ones. The first attempt
to provide such logics is an extension of  Lukasiewicz’s three-valued logic  L3 by the following tabular
modalities:

A �A ♦A
1 1 1

1/2 0 1
0 0 0

Later on,  Lukasiewicz proposed a four-valued approach to modal logic with tabular modalities
[116]. Both approaches are not popular in modern logic, because of some philosophically strange
principles they have (e.g. A → (A → �A) in the three-valued logic and �A → (�B ↔ ♦B) in the
four-valued). However, one can find some modern papers about  Lukasiewicz’s modal many-valued
logics: e.g., Font and Hájek [57] study algebraic properties of  Lukasiewicz’s four-valued modal logic
and conclude that some of its strange properties are connected with Aristotelian modal syllogistic;
Méndez and Robles show two ways how these strange properties could be eliminated: either by
the replacement of the propositional part of  Lukasiewicz’s modal four-valued logic by Brady’s [21]
relevant four-valued logic BN4 [121] or by using a paraconsistent four-valued logic P L4 [122].

Nowadays, many-valued modal logic usually uses many-valued Kripke semantics as a tool for
defining modalities. Among the first papers regarding this approach are Fitting’s ones [52, 53].
Modal extensions of FDE and related logics were also studied by Frankowski [58], Goble [66], Priest
[164, 165], Odintsov and Wansing [136, 137] as well as Odintsov, Skurt, and Wansing [135], Odintsov
and Latkin [132], Odintsov and Speranski [133, 134], Sedlár [172], Rivieccio, Jung, and Jansana
[169].

We will use many-valued modalities with the following truth and falsity conditions (which are
applicable for both three- and four-valued cases)1:

• 1 ∈ ϑ(�A, x) iff ∀y∈W (R(x, y) implies 1 ∈ ϑ(A, y)),

• 0 ∈ ϑ(�A, x) iff ∃y∈W (R(x, y) and 0 ∈ ϑ(A, y)),

• 1 ∈ ϑ(♦A, x) iff ∃y∈W (R(x, y) and 1 ∈ ϑ(A, y)),

1In defining the many-valued necessity operator in such a way we follow Odintsov and Wansing’s approach [136];
other modalities are defined in a similar fashion.

121
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• 0 ∈ ϑ(♦A, x) iff ∀y∈W (R(x, y) implies 0 ∈ ϑ(A, y)),

• 1 ∈ V (BA, x) iff ∀y∈W (R(x, y) implies 1 ∈ V (A, y)) or ∀y∈W (R(x, y) implies 1 6∈ V (A, y)),

• 0 ∈ V (BA, x) iff ∃y∈W (R(x, y) and 0 6∈ V (A, y)) and ∃y∈W (R(x, y) and 0 ∈ V (A, y)),

• 1 ∈ V (IA, x) iff ∃y∈W (R(x, y) and 1 6∈ V (A, y)) and ∃y∈W (R(x, y) and 1 ∈ V (A, y)),

• 0 ∈ V (IA, x) iff ∀y∈W (R(x, y) implies 0 6∈ V (A, y)) or ∀y∈W (R(x, y) implies 0 ∈ V (A, y)),

• 1 ∈ ϑ(◦A, x) iff 1 6∈ ϑ(A, x) or ∀y∈W (R(x, y) implies 1 ∈ ϑ(A, y)),

• 0 ∈ ϑ(◦A, x) iff 0 6∈ ϑ(A, x) and ∃y∈W (R(x, y) and 0 ∈ ϑ(A, y)),

• 1 ∈ ϑ(•A, x) iff 1 ∈ ϑ(A, x) and ∃y∈W (R(x, y) and 1 6∈ ϑ(A, y)),

• 0 ∈ ϑ(•A, x) iff 0 ∈ ϑ(A, x) or ∀y∈W (R(x, y) implies 0 6∈ ϑ(A, y)),

• 1 ∈ ϑ(◦̃A, x) iff 1 ∈ ϑ(A, x) or ∀y∈W (R(x, y) implies 1 6∈ ϑ(A, y)),

• 0 ∈ ϑ(◦̃A, x) iff 0 ∈ ϑ(A, x) and ∃y∈W (R(x, y) and 0 6∈ ϑ(A, y)),

• 1 ∈ ϑ(•̃A, x) iff 1 6∈ ϑ(A, x) and ∃y∈W (R(x, y) and 1 ∈ ϑ(A, y)),

• 0 ∈ ϑ(•̃A, x) iff 0 6∈ ϑ(A, x) or ∀y∈W (R(x, y) implies 0 ∈ ϑ(A, y)),

• 1 ∈ ϑ(∼A, x) iff ∃y∈W (R(x, y) and 1 6∈ ϑ(A, y)),

• 0 ∈ ϑ(∼A, x) iff ∀y∈W (R(x, y) implies 0 6∈ ϑ(A, y)),

• 1 ∈ ϑ(∼̇A, x) iff ∀y∈W (R(x, y) implies 1 6∈ ϑ(A, y)),

• 0 ∈ ϑ(∼̇A, x) iff ∃y∈W (R(x, y) and 0 6∈ ϑ(A, y)).

The remarkable feature of this approach is that we postulate both truth and falsity conditions.
It is enough for the classical case to give only the truth part of the conditions, the falsity part is
deducible. However, since we have more values now, the truth and falsity conditions have become
independent from each other. This feature has its representation on the syntactical level as well: we
have to give rules not only for the connectives themselves, but for the negations of the connectives.
Again, in the classical case, such rules for the negations of connectives are derivable, but in the
many-valued case, they are independent.

4.2 Hypersequent calculi for modal many-valued logics
Hypersequent calculi for modal many-valued logics are obtained from the hypersequent calculi for
two-valued modal logics by replacing the classical rules with the rules (in their hypersequent formu-
lations) for three- and four-valued logics considered in the previous chapter and adding the rules for
the negated modalities, which are given below.

For the negated necessity and possibility operators, we use Kamide’s ones [90] which are an
adaptation of the rules of MMLS5

n from [71], as he notes [90, p. 35]:

(¬�⇒)
¬A⇒ | H
¬�A⇒ | H

(⇒ ¬�)
Γ⇒ ∆,¬A | H

Γ⇒ ∆ | ⇒ ¬�A | H

(¬♦⇒)
¬A,Γ⇒ ∆ | H

¬♦A⇒ | Γ⇒ ∆ | H
(⇒ ¬♦)

⇒ ¬A | H
⇒ ¬♦A | H
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As for non-standard modalities, we offer the following rules for their negations:

(¬B⇒)
⇒ ¬A | ¬A⇒ | H
¬BA⇒ | H

(⇒ ¬B)
¬A,Γ⇒ ∆ | H Θ⇒ Λ,¬A | G
⇒ ¬BA | Γ⇒ ∆ | Θ⇒ Λ | H | G

(¬I⇒)
¬A,Γ⇒ ∆ | H Θ⇒ Λ,¬A | G
¬IA⇒ | Γ⇒ ∆ | Θ⇒ Λ | H | G

(⇒ ¬I)
⇒ ¬A | ¬A⇒ | H
⇒ ¬IA | H

(¬◦ ⇒)
¬A⇒ | Γ⇒ ∆,¬A | H
¬◦A,Γ⇒ ∆ | H

(⇒ ¬◦)
Γ⇒ ∆,¬A | H ¬A,Θ⇒ Λ | G

Θ⇒ Λ,¬◦A | Γ⇒ ∆ | H | G

(¬• ⇒)
Γ⇒ ∆,¬A | H ¬A,Θ⇒ Λ | G
¬•A,Θ⇒ Λ | Γ⇒ ∆ | H | G

(⇒ ¬•)
¬A⇒ | Γ⇒ ∆,¬A | H

Γ⇒ ∆,¬•A | H

(¬◦̃ ⇒)
¬A,Γ⇒ ∆ | ⇒ ¬A | H
¬◦̃A,Γ⇒ ∆ | H

(⇒ ¬◦̃)
Γ⇒ ∆,¬A | H ¬A,Θ⇒ Λ | G

Γ⇒ ∆,¬◦̃A | Θ⇒ Λ | H | G

(¬•̃ ⇒)
Γ⇒ ∆,¬•̃A | H ¬•̃A,Θ⇒ Λ | G
¬•̃A,Γ⇒ ∆ | Θ⇒ Λ | H | G

(⇒ ¬•̃)
¬A,Γ⇒ ∆ | ⇒ ¬A | H

Γ⇒ ∆,¬•̃A | H

(¬∼ ⇒)
¬A,Γ⇒ ∆ | H

¬∼A⇒ | Γ⇒ ∆ | H
(⇒ ¬∼)

⇒ ¬A | H
⇒ ¬∼A | H

(¬∼̇ ⇒)
⇒ ¬A | H
¬∼̇A⇒ | H

(⇒ ¬∼̇)
¬A,Γ⇒ ∆ | H

⇒ ¬∼̇A | Γ⇒ ∆ | H

Let ♣ ∈ {�,♦,B,I, ◦, •, ◦̃, •̃,∼, ∼̇}. Let X ∈ {Ki(})m
3¬ ,LPi(})m

¬ ,FDEj(})m
¬ }, where 1 6 i 6 4,

1 6 j 6 16. By XS5♣ we denote a logic which is the logic X supplied with S5-style many-valued
modalities, defined according to the definitions listed in Section 4.1. Similar notation will be used
for the logics based on K-, S4-, and other types of modalities.

Now we are going to present a Hintikka-style completeness proof for the modal many-valued logics
in questions. Notice that in order to obtain the negation subformula property we use the formulations
of these logics with the axioms ⇒ A,¬A (LP-style logics) and A,¬A⇒ (K3-style logics).

Theorem 142 (Strong soundness). Let X ∈ {Ki(})m
3¬ ,LPi(})m

¬ ,FDEj(})m
¬ }, where 1 6 i 6 4, 1 6

j 6 16. Let ♣ ∈ {�,♦,B,I, ◦, •, ◦̃, •̃,∼, ∼̇} and L = XS5♣. For each finite set of hypersequents
H ∪ {H}, if H `HSL H, then H |=L H.

Proof. The propositional case follows from Theorems 119 and 128. The modal case can be proven
similarly to Theorem 5.

Theorem 143 (Strong completeness). Let L ∈ {Ki(})m
3¬ ,LPi(})m

¬ ,FDEj(})m
¬ }, where 1 6 i 6 4,

1 6 j 6 16. Let ♣ ∈ {�,♦,B,I, ◦, •, ◦̃, •̃,∼, ∼̇} and L = S5♣. For each finite set of hypersequents
H ∪ {H}, if H |=L H, then H `cf

HSL H.

Proof. Similarly to Theorem 6. We again adapt Avron and Lahav’s [9] completeness proof for Z
and use all the constructions and notation from the proof of Theorem 6 with some minor changes
regarding the definition of a valuation which we explain below.

Suppose that H 6`cf
HSL H. We construct a model of H which is not a model of H.

For each p ∈ P , let us define a valuation ϑ in the subsequent way (for the case LPi(})m
¬ ):

• v(p) = 1/2 iff p ∈ Γw and ¬p ∈ Γw,

• v(p) = 1 iff p ∈ Γw and ¬p 6∈ Γw,
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• v(p) = 0 iff p 6∈ Γw and ¬p ∈ Γw.

The valuation ϑ is well-defined, since ⇒ p,¬p is provable in the sequent calculus for LPi(})m
¬ .

For the case K
i(})m
3¬ , the condition for 1/2 should be changed:

• v(p) = 1/2 iff p 6∈ Γw and ¬p 6∈ Γw.

The valuation ϑ is well-defined, since p,¬p⇒ is provable in the sequent calculus for K
i(})m
3¬ .

In the case of FDEj(})m
¬ , the condition for 1/2 should be replaced with the following ones:

• v(p) = b iff p ∈ Γw and ¬p ∈ Γw,

• v(p) = n iff p 6∈ Γw and ¬p 6∈ Γw.

We need to prove the following implications, for every formula A:

• if A ∈ ∆w, then 1 6∈ ϑ(A,w);

• if A ∈ Γw, then 1 ∈ ϑ(A,w);

• if ¬A ∈ ∆w, then 0 6∈ ϑ(A,w);

• if ¬A ∈ Γw, then 0 ∈ ϑ(A,w).

As an example, we provide the proof for LP1(})m
¬ = LP(})m

¬ , LP3(})m
¬ = DG

(})m
3¬ , LP4(})m

¬ =

DP
(})m
3¬ , and the cases of some modalities which can be added to any of the logics in question (these

cases seem to be the most representative ones).
The proof is by induction on the complexity of A. The basic case (i.e., A ∈ P) follows from the

definition of ϑ.
Let A be ¬B. Suppose that A ∈ ∆w, i.e., ¬B ∈ ∆w. By the induction hypothesis on B, we have

0 6∈ ϑ(B,w). Thus, 1 6∈ ϑ(¬B,w).
Suppose that A ∈ Γw, i.e., ¬B ∈ Γw. By the induction hypothesis on B, 0 ∈ ϑ(B,w). Thus,

1 ∈ ϑ(¬B,w).
Suppose that ¬A ∈ ∆w, i.e., ¬¬B ∈ ∆w. In the case of LP(})m

¬ , suppose that B 6∈ ∆w. Since w
is maximal, Γw ⇒ ∆w, B 6∈ H∗. Since H∗ is an F-hypersequent, H `cf

HSL H
∗ | Γw ⇒ ∆w, B. By the

rule (⇒ ¬¬), H `cf
HSL H

∗ | Γw ⇒ ∆w,¬¬B. Since ¬¬B ∈ ∆w, by (IC⇒), H `cf
HSL H

∗ | Γw ⇒ ∆w,
i.e., H `cf

HSL H
∗ | w. Since w ∈ H∗, by (EC), H `cf

HSL H
∗. Contradiction. Thus, B ∈ ∆w. By the

induction hypothesis, 1 6∈ ϑ(B,w). Hence, 0 6∈ ϑ(¬B,w).
In the case of the logic DG

(})m
3¬ , suppose that ¬B 6∈ Γw. Since w is maximal and H∗ is an F-

hypersequent, H `cf
HSL H

∗ | ¬B,Γw ⇒ ∆w. Since ¬¬B ∈ ∆w, H `cf
HSL H

∗ | ¬¬B,Γw ⇒ ∆w. Then,
by the rule (EM⇒), H `cf

HSL H∗ | Γw ⇒ ∆w. Contradiction. Thus, ¬B ∈ Γw. By the induction
hypothesis on B, 0 ∈ v(B,w). Thus, 0 6∈ v(¬B,w).

In the case of the logic DP
(})m
3¬ , suppose that B 6∈ Γw or ¬B 6∈ Γw. Since w is maximal and H∗ is

an F-hypersequent, H `cf
HSL H

∗ | B,Γw ⇒ ∆w or H `cf
HSL H

∗ | ¬B,Γw ⇒ ∆w. In the former case,
we apply the rule (⇒ ¬4¬4) and get H `cf

HSL H
∗ | Γw ⇒ ∆w,¬¬B. As in the case of LP(})m

¬ , it entails
a contradiction. in the latter case, notice that since ¬¬B ∈ ∆w, H `cf

HSL H
∗ | ¬¬B,Γw ⇒ ∆w, then

apply (EM⇒) and get H `cf
HSL H

∗ | Γw ⇒ ∆w. Contradiction. Thus, B ∈ Γw and ¬B ∈ Γw. By the
induction hypothesis on B, 1 ∈ v(B,w) and 0 ∈ v(B,w), i.e., v(B,w) = 1/2. Thus, v(¬B,w) = 1,
hence 0 6∈ v(¬B,w).

Suppose that ¬A ∈ Γw, i.e., ¬¬B ∈ Γw. For the case of the logic LP(})m
¬ suppose that B 6∈ Γw.

Since w is maximal, B,Γw ⇒ ∆w 6∈ H∗. Since H∗ is an F-hypersequent, H `cf
HSL H

∗ | B,Γw ⇒ ∆w.
By the rule (¬¬ ⇒), H `cf

HSL H
∗ | ¬¬B,Γw ⇒ ∆w. Since ¬¬B ∈ Γw, by (IC⇒), H `cf

HSL H
∗ | w.

By (EC), H `cf
HSL H∗. Contradiction. Thus, B ∈ Γw. By the induction hypothesis, 1 ∈ v(B,w).

Hence, 0 ∈ v(¬B,w).
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For the case of the logic DG
(})m
3¬ suppose that ¬B 6∈ ∆w. Since w is maximal and H∗ is an

F-hypersequent, H `cf
HSL H

∗ | Γw ⇒ ∆w,¬B. By the rule (¬¬ ⇒G), H `cf
HSL H

∗ | ¬¬B,Γw ⇒ ∆w.
As in the case of LP(})m

¬ , it entails a contradiction. Thus, ¬B ∈ ∆w. By the induction hypothesis
on B, 0 6∈ v(B,w). Hence, 0 ∈ v(¬B,w).

For the case of the logic DP
(})m
3¬ suppose that B 6∈ ∆w and ¬B 6∈ ∆w. Since w is maximal and

H∗ is an F-hypersequent, H `cf
HSL H∗ | Γw ⇒ ∆w, B and H `cf

HSL H∗ | Γw ⇒ ∆w,¬B. By the
rule (¬4¬4 ⇒), H `cf

HSL H
∗ | ¬¬B,Γw ⇒ ∆w. As in the case of LP(})m

¬ , it entails a contradiction.
Thus, B ∈ ∆w or ¬B ∈ ∆w. By the induction hypothesis on B, 1 6∈ v(B,w) or 0 6∈ v(B,w), i.e.,
v(B,w) 6= 1/2. Thus, v(¬B,w) 6= 1, and hence 0 ∈ v(¬B,w).

Let A be }(B1, . . . , Bn). Suppose that A ∈ ∆w, i.e., }(B1, . . . , Bn) ∈ ∆w. Let for each l, such
that 1 6 l 6 n, v(Bl) = xl, and f}(x1, . . . , xn) = y. Suppose that 1 ∈ v(}(B1, . . . , Bn), w).
Thus, 1 ∈ f}(v(B1), . . . , v(Bn)), 1 ∈ f}(x1, . . . , xn), and 1 ∈ y. Suppose that ¬Bi 6∈ Γw, for each
i ∈ t, ¬Bj 6∈ ∆w, Bj 6∈ ∆w, for each j ∈ h, and Bk 6∈ Γw, for each k ∈ f. Using maximality
of w and the fact that H∗ is an F-hypersequent, we obtain that H `cf

HSL H∗ | ¬Bi,Γw ⇒ ∆w,
for each i ∈ t, H `cf

HSL H∗ | Γw ⇒ ∆w, Bj, H `cf
HSL H∗ | Γw ⇒ ∆w,¬Bj, for each j ∈ h,

H `cf
HSL H∗ | Bk,Γw ⇒ ∆w, for each k ∈ f. Applying the rule (⇒ }LPDG3

〈t,h,f〉1/2 ), we obtain that
H `cf

HSL H
∗ | Γw ⇒ ∆w,}(B1, . . . , Bn). By structural rules, H `cf

HSL H
∗. Contradiction.

Thus, ¬Bi ∈ Γw, for some i ∈ t, or ¬Bj ∈ ∆w, for some j ∈ h, Bj ∈ ∆w, for some j ∈ h, or
Bk ∈ Γw, for some k ∈ f.

Suppose that ¬Bi ∈ Γw, for some i ∈ t. By the definition of the rule (⇒ }LPDG3

〈t,h,f〉1/2 ) and the
set t, v(Bi, w) = 1. However, by the inductive hypothesis on B, 0 ∈ v(Bi, w), hence v(Bi, w) 6= 1.
Contradiction.

Suppose that ¬Bj ∈ ∆w, for some j ∈ h. By the definition of the rule (⇒ }LPDG3

〈t,h,f〉1/2 ) and the set
h, v(Bi, w) = 1/2. However, by the inductive hypothesis on B, 0 6∈ v(Bi, w), hence v(Bi, w) 6= 1/2.
Contradiction.

Suppose that Bj ∈ ∆w, for some j ∈ h. By the definition of the rule (⇒ }LPDG3

〈t,h,f〉1/2 ) and the set
h, v(Bi, w) = 1/2. However, by the inductive hypothesis on B, 1 6∈ v(Bi, w), hence v(Bi, w) 6= 1/2.
Contradiction.

Suppose that Bk ∈ Γw, for some k ∈ f. By the definition of the rule (⇒ }LPDG3

〈t,h,f〉1/2 ) and the set
f, v(Bi, w) = 0. However, by the inductive hypothesis on B, 1 ∈ v(Bi, w), hence v(Bi, w) 6= 0.
Contradiction.

Therefore, 1 6∈ v(}(B1, . . . , Bn), w).
Suppose that A ∈ Γw, i.e., }(B1, . . . , Bn) ∈ Γw. Similarly to the previous case, use (}⇒LPDG3

〈t,h,f〉0 ).
Suppose that ¬A ∈ ∆w, i.e., ¬}(B1, . . . , Bn) ∈ ∆w. Similarly to the previous case, use the rule

(⇒ ¬}LPDG3

〈t,h,f〉1/2 ).
Suppose that ¬A ∈ Γw, i.e., ¬}(B1, . . . , Bn) ∈ Γw. Similarly to the previous case, use the rule

(¬}⇒LPDG3

〈t,h,f〉1 ).
Let A be BB. Suppose that A ∈ Γw. Similarly to Theorem 6. Assume that there is y ∈ W such

that B 6∈ Γy and there is a z ∈ W such that B 6∈ ∆z. Since y and z are maximal and H∗ is an
F-hypersequent, H `cf

HSL H∗ | B,Γy ⇒ ∆y and H `cf
HSL H∗ | Γz ⇒ ∆z, B. By the rule (B ⇒),

H `cf
HSL H∗ | BB ⇒ | Γy ⇒ ∆y | Γz ⇒ ∆z. By structural rules, H `cf

HSL H∗. Contradiction.
Hence, for each x ∈ W , B ∈ Γx, or for each x ∈ W , B ∈ ∆x. By the induction hypothesis for B, for
each x ∈ W , 1 ∈ ϑ(B, x) or for each x ∈ W , 1 6∈ ϑ(B, x). Thus, 1 ∈ ϑ(A,w).

Suppose that A ∈ ∆w. Similarly to Theorem 6. Assume that B ⇒ 6∈ H∗. Then H `cf
HSL H∗ |

B ⇒, since H∗ is an F-sequence. By (EW), H `cf
HSL H

∗ | ⇒ B | B ⇒. By (⇒ B), H `cf
HSL H

∗ |
⇒ BB. By structural rules, H `cf

HSL H
∗. Contradiction. Hence, B ⇒ ∈ H∗. Therefore, there is a

y ∈ W such that B ∈ Γy. By the induction hypothesis for B, there is a y ∈ W such that 1 ∈ ϑ(B, y).
In a similar way we show that ⇒ B ∈ H∗. Thus, there is a z ∈ W such that B ∈ ∆z. By the
induction hypothesis for B, there is a z ∈ W such that 1 6∈ ϑ(B, z). Therefore, 1 6∈ ϑ(A,w).
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Suppose that ¬A ∈ Γw. Assume that ¬B ⇒ 6∈ H∗. Then H `cf
HSL H∗ | ¬B ⇒, since H∗ is an

F-sequence. By (EW), H `cf
HSL H∗ | ⇒ ¬B | ¬B ⇒. By (¬B ⇒), H `cf

HSL H∗ | ¬BB ⇒. By
structural rules, H `cf

HSL H∗. Contradiction. Hence, ¬B ⇒ ∈ H∗. Therefore, there is a y ∈ W
such that ¬B ∈ Γy. By the induction hypothesis for B, there is a y ∈ W such that 0 ∈ ϑ(B, y).
In a similar way we show that ⇒ ¬B ∈ H∗. Thus, there is a z ∈ W such that ¬B ∈ ∆z. By the
induction hypothesis for B, there is a z ∈ W such that 0 6∈ ϑ(B, z). Therefore, 0 ∈ ϑ(A,w).

Suppose that ¬A ∈ ∆w. Assume that there is y ∈ W such that ¬B 6∈ Γy and there is a z ∈ W such
that ¬B 6∈ ∆z. Since y and z are maximal and H∗ is an F-hypersequent, H `cf

HSL H
∗ | ¬B,Γy ⇒ ∆y

and H `cf
HSL H

∗ | Γz ⇒ ∆z,¬B. By the rule (⇒ ¬B), H `cf
HSL H

∗ | ⇒ ¬BB | Γy ⇒ ∆y | Γz ⇒ ∆z.
By structural rules, H `cf

HSL H∗. Contradiction. Hence, for each x ∈ W , ¬B ∈ Γx, or for each
x ∈ W , ¬B ∈ ∆x. By the induction hypothesis for B, for each x ∈ W , 0 ∈ ϑ(B, x) or for each
x ∈ W , 0 6∈ ϑ(B, x). Thus, 0 6∈ ϑ(A,w).

Let A be ◦B. Suppose that A ∈ Γw. Suppose thatB 6∈ ∆w and for some maximal x ∈ W , B 6∈ Γx.
Then by the maximality of w and x as well as the fact that H∗ is an F-hypersequent, H `cf

HSL H
∗ |

Γw ⇒ ∆w, B and H `cf
HSL H∗ | B,Γx ⇒ ∆x. By the rule (◦ ⇒), H `cf

HSL H∗ | ◦B,Γw ⇒ ∆w, |
Γx ⇒ ∆x. Then H `cf

HSL H
∗ | w | x. By (Merge), H `cf

HSL H
∗. Contradiction. Thus, B ∈ ∆w or

for each x ∈ W , B ∈ Γx. It follows by the induction hypothesis for B that 1 6∈ ϑ(B,w) or for each
maximal x ∈ W , 1 ∈ ϑ(B, x). Hence, 1 ∈ ϑ(A,w).

Suppose that A ∈ ∆w. Assume that B 6∈ Γw or ⇒ B 6∈ H∗. Suppose that B 6∈ Γw. Then since w
is maximal, B,Γw ⇒ ∆w 6∈ H∗. Since B 6∈ Γw and H∗ is an F-hypersequent, H `cf

HSL H
∗ | B,Γw ⇒

∆w. By (EW), H `cf
HSL H

∗ | ⇒ B | B,Γw ⇒ ∆w. By the rule (⇒ ◦), H `cf
HSL H

∗ | Γw ⇒ ∆w, ◦B.
Since A ∈ ∆w, H `cf

HSL H
∗ | w. Using (Merge), we have H `cf

HSL H
∗. Contradiction. Suppose that

⇒ B 6∈ H∗. Since H∗ is an F-hypersequent, H `cf
HSL H∗ | ⇒ B. By (EW), H `cf

HSL H∗ | ⇒ B |
B,Γw ⇒ ∆w. Using (⇒ ◦) and (Merge), we get H `cf

HSL H
∗. Contradiction. Hence, B ∈ Γw and

⇒ B ∈ H∗. Then by the induction hypothesis for B, 1 ∈ ϑ(B,w) and for some x ∈ W , 1 6∈ ϑ(B, x).
Hence, 1 6∈ ϑ(A,w).

Suppose that ¬A ∈ Γw. Assume that ¬B 6∈ ∆w or ¬B ⇒ 6∈ H∗. Suppose that ¬B 6∈ ∆w.
Then since w is maximal, Γw ⇒ ∆w,¬B 6∈ H∗. Since H∗ is an F-hypersequent, H `cf

HSL H∗ |
Γw ⇒ ∆w,¬B. By (EW), H `cf

HSL H∗ | ¬B ⇒ | Γw ⇒ ∆w,¬B. By the rule (⇒ ◦), H `cf
HSL

H∗ | ¬◦B,Γw ⇒ ∆w. Since A ∈ ∆w, H `cf
HSL H∗ | w. Using (Merge), we have H `cf

HSL H∗.
Contradiction. Suppose that ¬B ⇒ 6∈ H∗. Since H∗ is an F-hypersequent, H `cf

HSL H∗ | ¬B ⇒.
By (EW), H `cf

HSL H∗ | ¬B ⇒| Γw ⇒ ∆w,¬B. Using (¬◦ ⇒) and (Merge), we get H `cf
HSL H∗.

Contradiction. Hence, ¬B ∈ ∆w and ¬B ⇒ ∈ H∗. Then by the induction hypothesis for B,
0 6∈ ϑ(B,w) and for some x ∈ W , 0 ∈ ϑ(B, x). Hence, 0 ∈ ϑ(A,w).

Let A be ◦B. Suppose that ¬A ∈ ∆w. Suppose that ¬B 6∈ Γw and for some maximal x ∈ W ,
¬B 6∈ ∆x. Then by the maximality of w and x as well as the fact that H∗ is an F-hypersequent,
H `cf

HSL H
∗ | ¬B,Γw ⇒ ∆w and H `cf

HSL H
∗ | Γx ⇒ ∆x,¬B. By the rule (⇒ ¬◦), H `cf

HSL H
∗ |

◦Γw ⇒ ∆w,¬◦B | Γx ⇒ ∆x. Then H `cf
HSL H

∗ | w | x. By (Merge), H `cf
HSL H

∗. Contradiction.
Thus, ¬B ∈ Γw or for each x ∈ W , ¬B ∈ ∆x. It follows by the induction hypothesis for B that
0 ∈ ϑ(B,w) or for each maximal x ∈ W , 0 6∈ ϑ(B, x). Hence, 0 6∈ ϑ(A,w).

The other cases are considered similarly.
Finally, we need to show that 〈W,ϑ〉 is a model for H , but not for H. It can be done analogously

to the similar claim from the proof of Theorem 6.

Corollary 144. Let L ∈ {Ki(})m
3¬ ,LPi(})m

¬ ,FDEj(})m
¬ }, where 1 6 i 6 4, 1 6 j 6 16. Let ♣ ∈

{�,♦,B,I, ◦, •, ◦̃, •̃,∼, ∼̇} and L = S5♣. For each finite set of hypersequents H ∪{H}, H `HSL H
iff H |=L H.

Proof. Follows from Theorems 142 and 143.

Corollary 145. Let L ∈ {Ki(})m
3¬ ,LPi(})m

¬ ,FDEj(})m
¬ }, where 1 6 i 6 4, 1 6 j 6 16. Let ♣ ∈

{�,♦,B,I, ◦, •, ◦̃, •̃,∼, ∼̇} and L = S5♣. Then H `HSL H implies H `cf
HSL H.
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Proof. Follows from Theorem 143. Notice that in the proof of this theorem, (Cut) is used only once
in order to show that 〈W,ϑ〉 is a model for H and is applied only to formulas which belong to
H .

Corollary 146 (Cut admissibility). Let L ∈ {Ki(})m
3¬ ,LPi(})m

¬ ,FDEj(})m
¬ }, where 1 6 i 6 4, 1 6

j 6 16. Let ♣ ∈ {�,♦,B,I, ◦, •, ◦̃, •̃,∼, ∼̇} and L = S5♣. Then `HSL H implies that there is a
cut-free proof of H in HSL.

Proof. Put H = ∅ in the proof of Theorem 143. Then the only application of (Cut) in the proof of
this Theorem disappears.

Corollary 147 (Negated subformula property). Let L ∈ {Ki(})m
3¬ ,LPi(})m

¬ ,FDEj(})m
¬ }, where 1 6

i 6 4, 1 6 j 6 16. Let ♣ ∈ {�,♦,B,I, ◦, •, ◦̃, •̃,∼, ∼̇} and L = S5♣. For every hypersequent which
is provable in HSL, there is a proof such that each formula which occurs in it is a negated subformula
of the formulas which occur in the conclusion.

Proof. Follows from Corollary 146 and the fact that in any of the rules of HSL each formula which
occurs in the premises is a subformula of the formulas which occur in the conclusion.

4.3 Nested sequent calculi for modal many-valued logics
For the case of modal many-valued logics weaker than S5, we need to use the nested sequent calculi
framework. Nested sequent calculi for modal many-valued logics are obtained from the nested
sequent calculi for two-valued modal logics by replacing the classical rules with the rules (in their
nested sequent formulations) for three- and four-valued logics considered in the previous chapter and
adding the rules for the negated modalities which are given below.

[¬�⇒]
N[Γ⇒ ∆/¬A⇒]

N[¬�A,Γ⇒ ∆]
[⇒ ¬�]

N[Γ⇒ ∆,¬�A/(Θ⇒ Λ,¬A/X)]

N[Γ⇒ ∆,¬�A/(Θ⇒ Λ/X)]

[¬♦⇒]
N[¬♦A,Γ⇒ ∆/(¬A,Θ⇒ Λ/X)]

N[¬♦A,Γ⇒ ∆/(Θ⇒ Λ/X)]
[⇒ ¬♦]

N[Γ⇒ ∆/⇒ ¬A]

N[Γ⇒ ∆,¬♦A]

[¬B⇒L]
N[Γ⇒ ∆/¬A⇒]

N[¬BA,Γ⇒ ∆]
[¬B⇒R]

N[Γ⇒ ∆/⇒ ¬A]

N[¬BA,Γ⇒ ∆]

[⇒ ¬B]
N[Γ⇒ ∆,¬BA/(¬A,Θ⇒ Λ/X)] N[Γ⇒ ∆,¬BA/(Ξ⇒ Π,¬A/Y )]

N[Γ⇒ ∆,¬BA/(Θ⇒ Λ/X); (Ξ⇒ Π/Y )]

[¬I⇒]
N[¬IA,Γ⇒ ∆/(¬A,Θ⇒ Λ/X)] N[¬IA,Γ⇒ ∆/(Ξ⇒ Π,¬A/Y )]

N[¬IA,Γ⇒ ∆/(Θ⇒ Λ/X); (Ξ⇒ Π/Y )]

[⇒ ¬IL]
N[Γ⇒ ∆/¬A⇒]

N[Γ⇒ ∆,¬IA]
[⇒ ¬IR]

N[Γ⇒ ∆/⇒ ¬A]

N[Γ⇒ ∆,¬IA]

[¬◦ ⇒L]
N[Γ⇒ ∆/¬A⇒]

N[¬◦A,Γ⇒ ∆]
[¬◦ ⇒R]

N[Γ⇒ ∆,¬A]

N[¬◦A,Γ⇒ ∆]

[⇒ ¬◦] N[Γ⇒ ∆,¬◦A/(Θ⇒ Λ,¬A/X)] N[¬A,Ξ⇒ Π,¬◦A/Y ]

N[Γ,Ξ⇒ ∆,Π,¬◦A/Y ; (Θ⇒ Λ/X)]

[¬• ⇒]
N[¬•A,Γ⇒ ∆/(Θ⇒ Λ,¬A/X)] N[¬•A,¬A,Ξ⇒ Π/Y ]

N[¬•A,Γ,Ξ⇒ ∆,Π/Y ; (Θ⇒ Λ/X)]
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[⇒ ¬•L]
N[Γ⇒ ∆/¬A⇒]

N[Γ⇒ ∆,¬•A]
[⇒ ¬•R]

N[Γ⇒ ∆,¬A]

N[Γ⇒ ∆,¬•A]

[¬◦̃ ⇒L]
N[¬A,Γ⇒ ∆]

N[¬◦̃A,Γ⇒ ∆]
[¬◦̃ ⇒R]

N[Γ⇒ ∆/⇒ ¬A]

N[¬◦̃A,Γ⇒ ∆]

[⇒ ¬◦̃] N[Θ⇒ Λ,¬A,¬◦̃A/X] N[Γ⇒ ∆/(¬A,Ξ⇒ Π,¬◦̃A/Y )]

N[Γ,Θ⇒ ∆,Λ,¬◦̃A/X; (Ξ⇒ Π/Y )]

[⇒ ¬•̃L]
N[Γ⇒ ∆/⇒ ¬A]

N[Γ⇒ ∆,¬•̃A]
[⇒ ¬•̃R]

N[¬A,Γ⇒ ∆]

N[Γ⇒ ∆,¬•̃A]

[¬•̃ ⇒]
N[¬•̃A,Θ⇒ Λ,¬A/X] N[¬•̃A,Γ⇒ ∆/(¬A,Ξ⇒ Π/Y )]

N[¬•̃A,Γ,Θ⇒ ∆,Λ/X; (Ξ⇒ Π/Y )]

[¬∼ ⇒]
N[¬∼A,Γ⇒ ∆/(¬A,Θ⇒ Λ/X)]

N[¬∼A,Γ⇒ ∆/(Θ⇒ Λ/X)]
[⇒ ¬∼]

N[Γ⇒ ∆/⇒ ¬A]

N[Γ⇒ ∆,¬∼A]

[¬∼̇ ⇒]
N[Γ⇒ ∆/¬A⇒]

N[¬∼̇A,Γ⇒ ∆]
[⇒ ¬∼̇]

N[Γ⇒ ∆,¬∼̇A/(Θ⇒ Λ,¬A/X)]

N[Γ⇒ ∆,¬∼̇A/(Θ⇒ Λ/X)]

Theorem 148. Let Y ∈ {Ki(})m
3¬ ,LPi(})m

¬ ,FDEj(})m
¬ }, where 1 6 i 6 4, 1 6 j 6 16. Let

♣ ∈ {�,♦,B,I, ◦, •, ◦̃, •̃,∼, ∼̇}. Let X1, . . .Xm ∈ {T,D,4,B}. For any nested sequent N, if
NSKX1, . . .XmY♣ ` N, then KX1, . . .XmY♣ |= N.

Proof. Similarly to Theorem 27.

Theorem 149. Let Y ∈ {Ki(})m
3¬ ,LPi(})m

¬ ,FDEj(})m
¬ }, where 1 6 i 6 4, 1 6 j 6 16. Let

♣ ∈ {�,♦,B,I, ◦, •, ◦̃, •̃,∼, ∼̇}. Let X1, . . .Xm ∈ {T,D,4,B}. For any nested sequent N, if
NSKX1, . . .XmY♣ ` N, then KX1, . . .XmY♣ |= N.

Proof. Similarly to Theorem 36.

Theorem 150 (Cut admissibility). Let Y ∈ {Ki(})m
3¬ ,LPi(})m

¬ ,FDEj(})m
¬ }, where 1 6 i 6 4, 1 6 j 6

16. Let ♣ ∈ {�,♦,B,I, ◦, •, ◦̃, •̃,∼, ∼̇}. L = NSKY♣ and N be a nested sequent. Then `NSL N
implies that there is a cut-free proof of N in NSL.

Proof. Follows from Theorem 149 and the fact that in its proof the rule of cut is not needed for its
proof.

4.4 Natural deduction for modal many-valued logics
The rules for negated � and ♦ can be easily obtained from the rules for ∼ and ∼̇ (recall that
∼A = ¬�A and ∼̇A = ¬♦A) from Section 2.5.

(¬�GI)a

[¬�A]a

D1 D2

F ¬A
F

(¬�E)a

[¬A,B1 . . . Bm]a

D0 D1 . . .Dm E
¬�A B1 . . . Bm C

C

(¬♦GI)a,b

[¬♦A]a [B1 . . . Bm]b

D0 D1 . . .Dm E
F B1 . . . Bm ¬A

F
(¬♦GE)a

[¬A]a

D1 D2

¬♦A F

F
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B1, . . . , Bm are exactly the undischarged assumptions in D and ¬A,B1, . . . , Bm in E. For S5-style
logics, ¬A,B1, . . . , Bm, C are required to be modalized.

We can also offer the rules for the negated operators∼ and ∼̇, taking into account that ¬∼A = �A
and ¬∼̇A = ♦A.

(¬∼GI)a,b

[¬∼A]a [B1 . . . Bm]b

D0 D1 . . .Dm D
F B1 . . . Bm A

F
(¬∼GE)a

[A]a

D1 D2

¬∼A F

F

(¬∼̇GI)a

[¬∼̇A]a

D1 D2

F A

F
(¬∼̇E)a

[A,B1 . . . Bm]a

D0 D1 . . .Dm E
¬∼̇A B1 . . . Bm C

C

B1, . . . , Bm are exactly the undischarged assumptions in D in (�I) and A,B1, . . . , Bm in E in (♦E).
For S5-style logics, A,B1, . . . , Bm, C are required to be modalized.

As for normalisation, one should take as a basis the normalisation proof for many-valued logics
(with all definitions, such as degree of a formula, etc., all reduction and permutation procedures,
inductions, and so on), and then add there the cases for modalities from Chapter 1, additional cases
for negated modalities, and the cases produced by many-valued and modal rules at the same time.
These cases are treated similarly to all the previous ones; let us give some examples.

Case (Example) 1. The maximal formula ¬�A is produced by applications of the rules (¬�E)
and (¬�GI).

[¬�A]a
D1 . . .Dm

B1 . . . Bm

[¬A,B1 . . . Bm]b

E1

C
(¬�E)b

C
E2

¬A(¬�GI)a
C

99K

E2 D1 . . .Dm

¬A B1 . . . Bm

E1

C
E2

¬A(¬�GI)a
C

Case (Example) 2. The maximal segment with the formula }(~F ) is produced by applications
of the rules R(〈t, f〉0) and (�GE). <1 and <2 stand for R(〈t, f〉0) and (�GE), respectively.

D0

�A

[A]a

D1

}(~F )<a
1

}(~F )

[¬F †i ]b

E†1
G

E‡2

F ‡j

E‡3

¬F ‡j

[F ∗k ]c

E∗4
G

<b,c
2 G

† for each i ∈ t, ‡ for each j ∈ h, ∗ for each k ∈ f.

We transform it as follows:

D0

�A

[A]a

D1

}(~F )

[¬F †i ]b

E†1
G

E‡2

F ‡j

E‡3

¬F ‡j

[F ∗k ]c

E∗4
G

<b,c
2 G<a

1 G

† for each i ∈ t, ‡ for each j ∈ h, ∗ for each k ∈ f.
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Theorem 151. Let ♣ ∈ {�,♦,B,I, ◦, •, ◦̃, •̃,∼, ∼̇}. Let X ∈ {Ki(})m
3¬ ,LPi(})m

¬ ,FDEj(})m
¬ }, where

1 6 i 6 4, 1 6 j 6 16. Let L = XS5♣. Any deduction in L can be converted into a deduction in
normal form.

Proof. Similarly to Theorem 100.

Theorem 152. Let ♣ ∈ {�,♦,B,I, ◦, •, ◦̃, •̃,∼, ∼̇}. Let X ∈ {Ki(})m
3¬ ,LPi(})m

¬ ,FDEj(})m
¬ }, where

1 6 i 6 4, 1 6 j 6 16. Let L = XS5♣. Deductions in normal forms in L have the negation
subformula property.

Proof. Similarly to Theorem 104.

4.5 Proof systems for modal multilattice logics

Multilattice logic2 can be viewed as an algebraic generalisation of some many-valued logics. It
generalises Arieli and Avron’s four-valued bilattice logic [2], Shramko and Wansing’s sixteen-valued
trilattice logic [179], Zaitsev’s eight-valued tetralattice logic [198]. These logics themselves generalise
Belnap-Dunn’s four-valued logic FDE (First Degree Entailment) [13, 14, 34]. From an algebraic point
of view, multilattices (or n-lattices) generalise bilattices [64, 65], trilattices [178], and tetralattices
[198] which themselves generalise De Morgan lattices, that is an algebraic semantics of FDE.

Multilattice logic MLn was first formulated by Shramko in [177], later on, by Kamide and Shramko
[91] it was extended by implications and co-implications as well as a first-order version FMLn was
presented. Among other multilattice logics are Kamide, Shramko, and Wansing’s bi-intuitionistic
multilattice logic BMLn and its connexive variant CMLn [93], Kamide’s linear multilattice logics
EMLn and LMLn [89], Kamide’s submultilattice logic SMn and indexed multilattice logic IMn [87],
a fragment of MLn, called MLLn, determined by logical multilattices (MLn itself is determined by
ultralogical multilattices) studied by Grigoriev and the author [68], and several modal multilattice
logics which are the subject of our interest. Modal multilattice logic MMLn was introduced by
Kamide and Shramko [92], it has S4-style modalities, but without an interdefinability of necessity
and possibility operators. A version of MMLn with the interdefinability was proposed by Grigoriev
and the author [70] under the name MMLS4

n . Kamide and Shramko [92] posed the problem of
the formulation of modal multilattice multilattice logic with S5-style modalities, such logic, called
MMLS5

n , was developed by Grigoriev and the author in [71]. Although Kamide and Shramko formu-
lated the notion of modal multilattice (multilattice with Tarski’s interior and closure operators), they
did not provide an algebraic completeness proof for MMLn. Besides, as follows from Cattaneo and
Ciucci’s research [24] to which Kamide and Shramko refer, S4-style modalities require Kuratowski’s
interior and closure operators, while Tarski’s ones correspond to a weaker logic, MNT4 (for S5
Halmos’ operators are needed). Also, the original notion of modal multilattice lacks some postulates
regarding inversions of closure and interior operators. An improved notion of modal multilattice was
given by Grigoriev and the author in [70] (called De Morgan modal multilattice), MMLn was proven
to be sound and complete with respect to it; in [69], the notions of Tarski, Kuratowski, and Halmos
multilattices were formulated as well as a new logic, MMLMNT4

n , a modal multilattice logic with
MNT4-style modalities, was described. As follows from [69], MMLMNT4

n , MMLS4
n , and MMLS5

n ,
respectively, are sound and complete with respect to Tarski, Kuratowski, and Halmos multilattices.
Later on in [68], there were studied some congruent and monotonic modal multilattice logics, which
are fragments of MMLMNT4

n .

2This section is based on the results obtained by the author in coauthorship with Grigoriev in [71, 69] as well as
some new previously unpublished results. In particular, the notions of Tarski, Kuratowski, and Halmos are taken from
[69]; the formulation of the hypersequent calculus for MMLS5

n with standard modalities is the result from [71]. The
author and Oleg Grigoriev have contributed equally to the papers [71, 69].
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In this section, we plan to mainly consider logic MMLS5
n , and partly logic MMLS4

n . Also, we
briefly describe how other modal multilattice logics can be obtained and formalised via nested sequent
calculi. We are going to describe some results obtained by Grigoriev and the author [71, 69, 70]
and some new ones. The cut-free hypersequent calculus for MMLS5

n developed in [71] is based on
Restall’s hypersequent calculus for S5 and is a more general version of an adaptation of Restall’s
calculus for three- and four-valued versions of S5 considered in previous sections. In [71], soundness,
completeness, and cut admissibility were established by the technique of embedding theorems. In
this section, we give a new completeness proof with respect to Kripke semantics by the Hintikka-
style method that is very similar to proofs that were presented before for S5-style non-standard and
many-valued modalities. Additionally, we present a constructive cut elimination proof similar to the
proofs considered in the previous sections. Last but not least, we formulate a multilattice version of
non-standard modalities.

Although our main hero is MMLS5
n , since it is a good example of modal multilattice logic and

is closely connected to the results from the previous sections, we will pay a bit more attention to
MMLS4

n . Although one may find a cut-free sequent calculus for it in [69], it will be interesting for
us from the point of view of natural deduction. Since the approach to natural deduction for modal
logics that we use in this paper allows us to obtain natural deduction systems for both S4- and
S5-style logics, we will introduce natural deduction systems for both MMLS4

n and MMLS5
n (and

MLn itself) which is another new result about these logics. Despite the fact that MLn generalizes
many-valued logics, it contains the Boolean negation. As a result, the natural deduction system
has some common features with the systems of classical logic. In the case of multilattice logic, we
do not consider n-ary connectives: just negations, conjunctions, and disjunctions corresponding to
inversions, meet and join operations of a multilattice (also implications and coimplications can be
expressed via them). So we do not have a Segerberg-style natural deduction system for multilattice
logic. But we are able to present a system in the style of Milne’s [125] natural deduction system
for classical logic with general introduction and elimination rules (which has a constructive proof of
normalisation due to Kürbis [103]). We prove the normalisation theorem for MMLS4

n and MMLS5
n

(although for simplicity we consider the language without (co)implications and with just one type of
modal operators: either necessity or possibility for MMLS5

n and only necessity for MMLS4
n ).

Besides, we formulate via Kripke semantics the modal multilattice logic MMLK
n and its reflexive,

serial, transitive, and symmetric extensions. Then we present cut-free sound and complete nested
sequent calculi for them, using methods similar to the ones that we applied in Section 2.4.

Now let us begin with some preliminaries about lattices, following their presentation in [35].

Definition 153 (Lattice). A lattice is a structure 〈L,∩,∪〉 with the relation a 6 b defined as
a ∩ b = a. Postulates characterising the operations are as follows, for each a, b ∈ L:

• Idempotence: a ∩ a = a, a ∪ a = a

• Commutativity: a ∩ b = b ∩ a, a ∪ b = b ∪ a
• Associativity: a ∩ (b ∩ c) = (a ∩ b) ∩ c, a ∪ (b ∪ c) = (a ∪ b) ∪ c
• Absorption: a ∩ (a ∪ b) = a, a ∪ (a ∩ b) = a.

Definition 154 (Distributive lattice). 〈L,∩,∪〉 is a distributive lattice iff it is a lattice satisfying
the following postulate, for any a, b, c ∈ L: a ∩ (b ∪ c) 6 (a ∩ b) ∪ c.

Definition 155 (De Morgan lattice). 〈L,∩,∪,−〉 is a de Morgan lattice iff 〈L,∩,∪〉 is a distributive
lattice and − satisfies the following conditions, for each a ∈ L:

• a 6 b iff −b 6 −a,
• a = −−a.
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Multilattices generalize De Morgan lattices. We are ready now to present the notion of a multi-
lattice and some other important related notions, following their description in [177, 70, 69].

Definition 156. [177, p. 204, Definition 4.1] A multilattice is a structure Mn = 〈S,61, . . . ,6n〉,
where n > 1, S 6= ∅, 61, . . . ,6n are partial orders such that 〈S,61〉, . . . , 〈S,6n〉 are lattices with the
corresponding pairs of meet and join operators 〈∩1,∪1〉, . . . , 〈∩n,∪n〉 as well as the corresponding
j-inversion operators −1, . . . ,−n which satisfy the following conditions, for each j, k 6 n, j 6= k, and
a, b ∈ S:

a 6j b implies −jb 6j −ja; (anti)
a 6k b implies −ja 6k −jb; (iso)

−j−ja = a. (per2)

Remark 157. Notice that an algebraic completeness proof for a multilattice logic MLn and its
modal extensions given in [70] (see [69, 68] for modal extensions) uses a bit different notion of a
multilattice: the conditions (anti) and (iso) are replaced by the following ones:

−j(a ∩j b) = −ja ∪j −jb; (DM1)
−j(a ∪j b) = −ja ∩j −jb; (DM2)
−k(a ∩j b) = −ka ∩j −kb; (DM3)
−k(a ∪j b) = −ka ∪j −kb. (DM4)

A more detailed exposition of algebraic completeness of multilattice logics can be found in [70, 69, 68].

Definition 158 (Distributive multilattice). [92, p. 319, Definition 2.1]. A multilatticeMn = 〈S,61

, . . . ,6n〉 is called distributive iff all 2(2n2 − n) distributive laws are satisfied, i.e., a ⊗ (b ⊕ c) =
(a⊗ b)⊕ (a⊗ c), where a, b, c ∈ S, ⊗,⊕ ∈ {∪1,∩1, . . . ,∪n,∩n}, and ⊗ 6= ⊕.

Remark 159. Although the subsequent definitions in this Section do not require distributivity, we
are going to deal with distrubutive multilattices exclusively in our research.

Definition 160 (Multifilter). [92, p. 319, Definition 2.3] LetMn = 〈S,61, . . . ,6n〉 be a multilattice.
Fn ( S is a multifilter onMn iff the following condition holds, for each j, k 6 n, j 6= k, and a, b ∈ S:

• a ∩j b ∈ Fn iff a ∈ Fn and b ∈ Fn;

A multifilter Fn is a prime multifilter on Mn iff the following condition holds, for each j, k 6 n,
j 6= k, and a, b ∈ S:

• a ∪j b ∈ Fn iff a ∈ Fn or b ∈ Fn.

Definition 161 (Logical multilattice). [92, p. 319, Definition 2.3] A pair 〈Mn,Fn〉 is a logical
multilattice iffMn = 〈S,61, . . . ,6n〉 is a multilattice and Fn is a prime multifilter.

Definition 162 (Ultralogical multilattice). [92, p. 319, Definition 2.4] A pair 〈Mn,Un〉 is an ul-
tralogical multilattice iff 〈Mn,Un〉 is a logical multilattice and Un satisfies the following condition,
for each j, k 6 n, j 6= k, and a ∈ S:

• a ∈ Un iff −k−ja 6∈ Un (Un is an ultramultifilter onMn).

Definition 163 (Language). The formulas of the language LM of the logic MLn are built from
the set P = {pn | n ∈ N} of propositional variables, negations ¬1, . . . ,¬n, conjunctions ∧1, . . . ,∧n,
disjunctions ∨1, . . . ,∨n, implications →1, . . . ,→n, and co-implications ←1, . . . ,←n. The set of all
LM -formulas FM is defined in a standard inductive way. The language L �

M of the logic MMLS5
n

extends LM by modal operators of necessity �1, . . . ,�n and possibility ♦1, . . . ,♦n. The set of all
L �

M -formulas F�
M is defined in a standard inductive way.
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Definition 164 (Valuation in MLn and MMLS5
n ). A valuation v (of the logic MLn) is defined

as a mapping from P to S. It is extended into complex formulas as follows: v(¬jA) = −jv(A),
v(A ∧j B) = v(A) ∩j v(B), v(A ∨j B) = v(A) ∪j v(B), v(A →j B) = −k−jv(A) ∪j v(B), and
v(A←j B) = v(A)∩j−k−jv(B). A modal valuation (of the logic MMLS5

n ) has two additional cases:
v(�jA) = Ijv(A), v(♦jA) = Cjv(A).

Remark 165. In MLn, if j, k 6 n and j 6= k, then ¬k¬jA is equivalent to ¬j¬kA; ¬k¬j behaves as
Boolean negation; A is equivalent to ¬j¬jA.

Let us give a concrete example of a multilattice. Let n = 2. Then we obtain a bilattice B =
〈S,61,62〉. Let S = {1, b, n, 0} (the interpretation of these elements is the same as in FDE), let
61 be such that 0 61 n 61 1 and 0 61 b 61 1 (n and b are incomparable), and let 62 be such that
n 62 1 62 b and n 61 0 61 b (1 and 0 are incomparable). The order 61 is known as truth order,
since it orders “degree of truth”; the order 62 is known as knowledge or information order, since it
orders “degree of information”; see e.g. [2, 55] for more details.

We will denote 61 and 62, respectively, as 6t and 6k. The order 6t produces involution, meet,
and join operations which correspond to the connectives of FDE, denoted as ¬,∧,∨; the order 6k

produces involution, meet, and join operations which due to Fitting [55] are known as conflation,
consensus, and gullability, denoted as −,⊗,⊕ (see the truth tables below). One may easily observe
that the set {1, b} is a filter on B (it is also said to be the set of designated values).

A ¬ −
1 0 1
b b n
n n b
0 1 0

∧ 1 b n 0
1 1 b n 0
b b b 0 0
n n 0 n 0
0 0 0 0 0

∨ 1 b n 0
1 1 1 1 1
b 1 b 1 b
n 1 1 n n
0 1 b n 0

⊗ 1 b n 0
1 1 1 n n
b 1 b n 0
n n n n n
0 n 0 n 0

⊕ 1 b n 0
1 1 b 1 b
b b b b b
n 1 b n 0
0 b b 0 0

Definition 166 (Tarski multilattice). A multilattice Mn = 〈S,61, . . . ,6n〉 is said to be a Tarski
multilattice (or a modal multilattice with Tarski operators) iff for each j 6 n the unary Tarski-style
operations of interior Ij and closure Cj can be defined on S and satisfy the following conditions
(x, y ∈ S):

Ij(1j) = 1j; (1j is open)
Cj(0j) = 0j; (0j is closed)
−jIj(x) = Cj(−jx); (−jIj-definition)
−jCj(x) = Ij(−jx); (−jCj-definition)
−kIj(x) = Ij(−kx); (−kIj-definition)
−kCj(x) = Cj(−kx); (−kCj-definition)

Ij(x) = −j −k Cj(−j −k x); (I-definition)
Cj(x) = −j −k Ij(−j −k x); (C-definition)
Ij(x) 6j x; (decreasing)
Ij(x) = IjIj(x); (I-idempotent)

Ij(x ∩j y) 6j Ij(x) ∩j Ij(y); (sub-multiplicative)
x 6j Cj(x); (increasing)

Cj(x) = CjCj(x); (C-idempotent)
Cj(x) ∪j Cj(y) 6j Cj(x ∪j y). (sub-additive)

Fact 167. Each Tarski multilattice satisfies the following conditions:

x 6j y implies Ij(x) 6j Ij(y); (I-monotonicity)
x 6j y implies Cj(x) 6j Cj(y). (C-monotonicity)
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Proof. If x 6j y, then Ij(x) = Ij(x ∩j y) 6j Ij(x) ∩j Ij(y) 6j Ij(y).
If x 6j y, then Cj(x) 6j Cj(x) ∪j Cj(y) 6j Cj(x ∪j y) = Cj(y).

Definition 168 (Kuratowski multilattice). A Tarski multilattice Mn = 〈S,61, . . . ,6n〉 is said to
be a Kuratowski one (or a modal multilattice with Kuratowski operators) iff for each j 6 n the
operations Ij and Cj satisfy the following conditions:

Ij(x ∩j y) = Ij(x) ∩j Ij(y); (multiplicative)
Cj(x) ∪j Cj(y) = Cj(x ∪j y). (additive)

Definition 169 (Halmos multilattice). A Kuratowski multilatticeMn = 〈S,61, . . . ,6n〉 is said to
be a Halmos one (or a modal multilattice with Halmos operators) iff for each j 6 n the operations
Ij and Cj satisfy the following conditions:

Ij(−jIj(x)) = −jIj(x); (interior interconnection)
Cj(−jCj(x)) = −jCj(x). (closure interconnection)

Definition 170. A pair 〈Mn,Un〉 is a Tarski (resp. Kuratowski, Halmos) ultralogical multilattice iff
Mn is a Tarski (resp. Kuratowski, Halmos) multilattice and Un is an ultramultifilter on it.

Definition 171 (Entailment in multilattice logics). For any finite sets of formulas Γ and ∆:

• Γ |=MLLn ∆ iff for each logical multilattice 〈Mn,Fn〉 and each valuation v, it holds that if
v(C) ∈ Un, for each C ∈ Γ, then v(D) ∈ Un, for some D ∈ ∆.

• Γ |=MLn ∆ iff for each ultralogical multilattice 〈Mn,Un〉 and each valuation v, it holds that if
v(C) ∈ Un, for each C ∈ Γ, then v(D) ∈ Un, for some D ∈ ∆.

• Γ |=MMLMNT4
n

∆ iff for each Tarski ultralogical multilattice 〈Mn,Un〉 and each valuation v, it
holds that if v(C) ∈ Un, for each C ∈ Γ, then v(D) ∈ Un, for some D ∈ ∆.

• Γ |=MMLS4
n

∆ iff for each Kuratowski ultralogical multilattice 〈Mn,Un〉 and each valuation v,
it holds that if v(C) ∈ Un, for each C ∈ Γ, then v(D) ∈ Un, for some D ∈ ∆.

• Γ |=MMLS5
n

∆ iff for each Halmos ultralogical multilattice 〈Mn,Un〉 and each valuation v, it
holds that if v(C) ∈ Un, for each C ∈ Γ, then v(D) ∈ Un, for some D ∈ ∆.

A sequent is called valid for a multilattice logic L iff Γ |=L ∆ holds. When Γ⇒ ∆ is valid for L,
we write L |= Γ⇒ ∆ or |=L Γ⇒ ∆.

Let us present a hypersequent calculus for MMLS5
n from [71] (its non-modal part is a calculus

for MLn; if we delete from the non-modal part rules for ¬k¬j, implications, and coimplications, we
obtain a calculus for MLLn [68]; sequent calculi for MMLS4

n and MMLMNT4
n can be found in [69]).

The axioms are as follows, for any propositional variable p3:

(Ax) p⇒ p (Ax¬) ¬jp⇒ ¬jp

The non-negated logical rules are as follows:

(∧j ⇒)
A,B,Γ⇒ ∆ | H
A ∧j B,Γ⇒ ∆ | H

(⇒ ∧j)
Γ⇒ ∆, A | H Γ⇒ ∆, B | G

Γ⇒ ∆, A ∧j B | H | G

(∨j ⇒)
A,Γ⇒ ∆ | H B,Γ⇒ ∆ | G

A ∨j B,Γ⇒ ∆ | H | G
(⇒ ∨j)

Γ⇒ ∆, A,B | H
Γ⇒ ∆, A ∨j B | H

3By induction on the complexity of a formula it is possible to show that A⇒ A holds, for any L �M -formula A.
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(→j⇒)
Γ⇒ ∆, A | H B,Θ⇒ Λ | G
A→j B,Γ,Θ⇒ ∆,Λ | H | G

(⇒→j)
A,Γ⇒ ∆, B | H

Γ⇒ ∆, A→j B | H

(←j⇒)
A,Γ⇒ ∆, B | H

A←j B,Γ⇒ ∆ | H
(⇒←j)

Γ⇒ ∆, A | H B,Θ⇒ Λ | G
Γ,Θ⇒ ∆,Λ, A←j B | H | G

The jj-negated logical rules are as follows:

(¬j∧j ⇒)
¬jA,Γ⇒ ∆ | H ¬jB,Γ⇒ ∆ | G

¬j(A ∧j B),Γ⇒ ∆ | H | G
(⇒ ¬j∧j)

Γ⇒ ∆,¬jA,¬jB | H
Γ⇒ ∆,¬j(A ∧j B) | H

(¬j∨j ⇒)
¬jA,¬jB,Γ⇒ ∆ | H
¬j(A ∨j B),Γ⇒ ∆ | H

(⇒ ¬j∨j)
Γ⇒ ∆,¬jA | H Γ⇒ ∆,¬jB | G

Γ⇒ ∆,¬j(A ∨j B) | H | G

(¬j→j ⇒)
¬jB,Γ⇒ ∆,¬jA | H
¬j(A→j B),Γ⇒ ∆ | H

(⇒ ¬j→j)
Γ⇒ ∆,¬jB | H ¬jA,Θ⇒ Λ | G

Γ,Θ⇒ ∆,Λ,¬j(A→j B) | H | G

(¬j←j ⇒)
Γ⇒ ∆,¬jB | H ¬jA,Θ⇒ Λ | G
¬j(A←j B),Γ,Θ⇒ ∆,Λ | H | G

(⇒ ¬j←j)
¬jB,Γ⇒ ∆,¬jA | H

Γ⇒ ∆,¬j(A←j B) | H

(¬j¬j ⇒)
A,Γ⇒ ∆ | H

¬j¬jA,Γ⇒ ∆ | H
(⇒ ¬j¬j)

Γ⇒ ∆, A | H
Γ⇒ ∆,¬j¬jA | H

The kj-negated logical rules as follows:

(¬k∧j ⇒)
¬kA,¬kB,Γ⇒ ∆ | H
¬k(A ∧j B),Γ⇒ ∆ | H

(⇒ ¬k∧j)
Γ⇒ ∆,¬kA | H Γ⇒ ∆,¬kB | G

Γ⇒ ∆,¬k(A ∧j B) | H | G

(¬k∨j ⇒)
¬kA,Γ⇒ ∆ | H ¬kB,Γ⇒ ∆ | G

¬k(A ∨j B),Γ⇒ ∆ | H | G
(⇒ ¬k∨j)

Γ⇒ ∆,¬kA,¬kB | H
Γ⇒ ∆,¬k(A ∨j B) | H

(¬k→j ⇒)
Γ⇒ ∆,¬kA | H ¬kB,Θ⇒ Λ | G
¬k(A→j B),Γ,Θ⇒ ∆,Λ | H | G

(⇒ ¬k→j)
¬kA,Γ⇒ ∆,¬kB | H

Γ⇒ ∆,¬k(A→j B) | H

(¬k←j ⇒)
¬kA,Γ⇒ ∆,¬kB | H
¬k(A←j B),Γ⇒ ∆ | H

(¬k←j ⇒)
Γ⇒ ∆,¬kA | H ¬kB,Θ⇒ Λ | G

Γ,Θ⇒ ∆,Λ,¬k(A←j B) | H | G

(¬k¬j ⇒)
Γ⇒ ∆, A | H

¬k¬jA,Γ⇒ ∆ | H
(⇒ ¬k¬j)

A,Γ⇒ ∆ | H
Γ⇒ ∆,¬k¬jA | H

The non-negated modal rules are as follows:

(�j ⇒)
A,Γ⇒ ∆ | H

�jA⇒ | Γ⇒ ∆ | H
(⇒ �j)

⇒ A | H
⇒ �jA | H

(♦j ⇒)
A⇒ | H
♦jA⇒ | H

(⇒ ♦j)
Γ⇒ ∆, A | H

Γ⇒ ∆ | ⇒ ♦jA | H

The jj-negated modal rules are as follows:

(¬j�j ⇒)
¬jA⇒ | H
¬j�jA⇒ | H

(⇒ ¬j�j)
Γ⇒ ∆,¬jA | H

Γ⇒ ∆ | ⇒ ¬j�jA | H

(¬j♦j ⇒)
¬jA,Γ⇒ ∆ | H

¬j♦jA⇒ | Γ⇒ ∆ | H
(⇒ ¬j♦j)

⇒ ¬jA | H
⇒ ¬j♦jA | H
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The kj-negated modal rules are as follows:

(¬k�j ⇒)
¬kA,Γ⇒ ∆ | H

¬k�jA⇒ | Γ⇒ ∆ | H
(⇒ ¬k�j)

⇒ ¬kA | H
⇒ ¬k�jA | H

(¬k♦j ⇒)
¬kA⇒ | H
¬k♦jA⇒ | H

(⇒ ¬k♦j)
Γ⇒ ∆,¬kA | H

Γ⇒ ∆ | ⇒ ¬k♦jA | H

For the case of non-standard modalities we propose the following rules. The non-negated rules
for non-standard modalities:

(Bj ⇒)
A,Γ⇒ ∆ | H Θ⇒ Λ, A | G
BjA⇒ | Γ⇒ ∆ | Θ⇒ Λ | H | G

(⇒ Bj)
⇒ A | A⇒ | H
⇒ BjA | H

(Ij ⇒)
⇒ A | A⇒ | H
IjA⇒ | H

(⇒ Ij)
A,Γ⇒ ∆ | H Θ⇒ Λ, A | G
⇒ IjA | Γ⇒ ∆ | Θ⇒ Λ | H | G

(◦j ⇒)
A,Γ⇒ ∆ | H Θ⇒ Λ, A | G
◦jA,Θ⇒ Λ | Γ⇒ ∆ | H | G

(⇒ ◦j)
⇒ A | A,Γ⇒ ∆ | H

Γ⇒ ∆, ◦jA | H

(•j ⇒)
⇒ A | A,Γ⇒ ∆ | H
•jA,Γ⇒ ∆ | H

(⇒ •j)
A,Γ⇒ ∆ | H Θ⇒ Λ, A | G

Θ⇒ Λ, •jA | Γ⇒ ∆ | H | G

(◦̃j ⇒)
A,Γ⇒ ∆ | H Θ⇒ Λ, A | G
◦̃jA,Γ⇒ ∆ | Θ⇒ Λ | H | G

(⇒ ◦̃j)
Γ⇒ ∆, A | A⇒ | H

Γ⇒ ∆, ◦̃jA | H

(•̃j ⇒)
Γ⇒ ∆, A | A⇒ | H
•̃jA,Γ⇒ ∆ | H

(⇒ •̃j)
A,Γ⇒ ∆ | H Θ⇒ Λ, A | G

Γ⇒ ∆, •̃jA | Θ⇒ Λ | H | G

(∼j ⇒)
⇒ A | H
∼jA⇒ | H

(⇒ ∼j)
A,Γ⇒ ∆ | H

Γ⇒ ∆ | ⇒ ∼jA | H

(∼̇j ⇒)
Γ⇒ ∆, A | H

∼̇jA⇒ | Γ⇒ ∆ | H
(⇒ ∼̇j)

A⇒ | H
⇒ ∼̇jA | H

The jj-negated rules for non-standard modalities:

(¬jBj ⇒)
⇒ ¬jA | ¬jA⇒ | H
¬jBjA⇒ | H

(⇒ ¬jBj)
¬jA,Γ⇒ ∆ | H Θ⇒ Λ,¬jA | G
⇒ ¬jBjA | Γ⇒ ∆ | Θ⇒ Λ | H | G

(¬jIj ⇒)
¬jA,Γ⇒ ∆ | H Θ⇒ Λ,¬jA | G
¬jIjA⇒ | Γ⇒ ∆ | Θ⇒ Λ | H | G

(⇒ ¬jIj)
⇒ ¬jA | ¬jA⇒ | H
⇒ ¬jIjA | H

(¬j◦j ⇒)
¬jA⇒ | Γ⇒ ∆,¬jA | H
¬j◦jA,Γ⇒ ∆ | H

(⇒ ¬j◦j)
Γ⇒ ∆,¬jA | H ¬jA,Θ⇒ Λ | G

Θ⇒ Λ,¬j◦Aj | Γ⇒ ∆ | H | G

(¬j•j ⇒)
Γ⇒ ∆,¬jA | H ¬jA,Θ⇒ Λ | G
¬j•jA,Θ⇒ Λ | Γ⇒ ∆ | H | G

(⇒ ¬j•j)
¬jA⇒ | Γ⇒ ∆,¬jA | H

Γ⇒ ∆,¬j•jA | H

(¬j ◦̃j ⇒)
¬jA,Γ⇒ ∆ | ⇒ ¬jA | H
¬j ◦̃jA,Γ⇒ ∆ | H

(⇒ ¬j ◦̃j)
Γ⇒ ∆,¬jA | H ¬jA,Θ⇒ Λ | G

Γ⇒ ∆,¬j ◦̃jA | Θ⇒ Λ | H | G

(¬j •̃j ⇒)
Γ⇒ ∆,¬jA | H ¬jA,Θ⇒ Λ | G
¬j •̃jA,Γ⇒ ∆ | Θ⇒ Λ | H | G

(⇒ ¬j •̃j)
¬jA,Γ⇒ ∆ | ⇒ ¬jA | H

Γ⇒ ∆,¬j •̃jA | H
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(¬j∼j ⇒)
Γ⇒ ∆,¬jA | H

¬j∼jA⇒ | Γ⇒ ∆ | H
(⇒ ¬j∼j)

¬jA⇒| H
⇒ ¬j∼jA | H

(¬j∼̇j ⇒)
⇒ ¬jA | H
¬j∼̇jA⇒ | H

(⇒ ¬j∼̇j)
¬jA,Γ⇒ ∆ | H

⇒ ¬j∼̇jA | Γ⇒ ∆ | H

The kj-negated rules for non-standard modalities:

(¬kBj ⇒)
¬kA,Γ⇒ ∆ | H Θ⇒ Λ,¬kA | G
¬kBjA⇒ | Γ⇒ ∆ | Θ⇒ Λ | H | G

(⇒ ¬kBj)
⇒ ¬kA | ¬kA⇒ | H
⇒ ¬kBjA | H

(¬kIj ⇒)
⇒ ¬kA | ¬kA⇒ | H
¬kIjA⇒ | H

(⇒ ¬kIj)
¬kA,Γ⇒ ∆ | H Θ⇒ Λ,¬kA | G
⇒ ¬kIjA | Γ⇒ ∆ | Θ⇒ Λ | H | G

(¬k◦j ⇒)
¬kA,Γ⇒ ∆ | H Θ⇒ Λ,¬kA | G
¬k◦jA,Θ⇒ Λ | Γ⇒ ∆ | H | G

(⇒ ◦j)
⇒ ¬kA | ¬kA,Γ⇒ ∆ | H

Γ⇒ ∆,¬k◦jA | H

(¬k•j ⇒)
⇒ ¬kA | ¬kA,Γ⇒ ∆ | H
¬k•jA,Γ⇒ ∆ | H

(⇒ ¬k•j)
¬kA,Γ⇒ ∆ | H Θ⇒ Λ,¬kA | G

Θ⇒ Λ,¬k•jA | Γ⇒ ∆ | H | G

(¬k◦̃j ⇒)
¬kA,Γ⇒ ∆ | H Θ⇒ Λ,¬kA | G
¬k◦̃jA,Γ⇒ ∆ | Θ⇒ Λ | H | G

(⇒ ¬k◦̃j)
Γ⇒ ∆,¬kA | ¬kA⇒ | H

Γ⇒ ∆,¬k◦̃jA | H

(¬k•̃j ⇒)
Γ⇒ ∆,¬kA | ¬kA⇒ | H
¬k•̃jA,Γ⇒ ∆ | H

(⇒ ¬k•̃j)
¬kA,Γ⇒ ∆ | H Θ⇒ Λ,¬kA | G

Γ⇒ ∆,¬k•̃jA | Θ⇒ Λ | H | G

(¬k∼j ⇒)
⇒ ¬kA | H
¬k∼jA⇒ | H

(⇒ ¬k∼j)
¬kA,Γ⇒ ∆ | H

Γ⇒ ∆ | ⇒ ¬k∼jA | H

(¬k∼̇j ⇒)
Γ⇒ ∆,¬kA | H

¬k∼̇jA⇒ | Γ⇒ ∆ | H
(⇒ ¬k∼̇j)

¬kA⇒ | H
⇒ ¬k∼̇jA | H

The notion of a proof in this hypersequent calculus is defined in a standard way.
The interdefinability laws �jA ⇔ ¬j¬k♦j¬j¬kA and ♦jA ⇔ ¬j¬k�j¬j¬kA are provable in

MMLS5
n . Besides, sequents ¬j♦jA ⇔ �j¬jA, ¬j�jA ⇔ ♦j¬jA, ¬k�jA ⇔ �j¬kA, and ¬k♦jA ⇔

♦j¬kA are provable in MMLS5
n as well.

Let us now present Kripke semantics for MMLS5
n developed on the basis of Kripke semantics

MMLn from [92] (it is a bit simplified version of the semantics for MMLS5
n from [71]). We write

P ∪ ¬P for the set of propositional variables joint with the set of negated propositional variables; to
be more precise, ¬P = {¬jp | p ∈ P , j 6 n}.

Definition 172. A triple 〈W,R,�p〉 is a MMLS5
n -model iff W 6= ∅, R = W ×W , and a paradefinite

valuation �p is a mapping �p : P ∪ ¬P 7→ 2W from the set of propositional variables and negated
propositional variable to the power-set of W . We write w �p p for w ∈ �p(p), where w ∈ W . The
paradefinite valuation �p is extended to the mapping from the set of all LM -formulas to 2W as
follows, x ∈ W :

(1) x �p A ∧j B iff x �p A and x �p B,

(2) x �p A ∨j B iff x �p A or x �p B,

(3) x �p A→j B iff w 2p A or x �p B,

(4) x �p A←j B iff x �p A and x 2p B,

(5) x �p �jA iff ∀y∈W (R(x, y) implies y �p A),

(6) x �p ♦jA iff ∃y∈W (R(x, y) and y �p A),

(7) x �p ¬j(A ∧j B) iff x �p ¬jA or x �p ¬jB,

(8) x �p ¬j(A ∨j B) iff x �p ¬jA and x �p ¬jB,
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(9) x �p ¬j(A→j B) iff x �p ¬jB and x 2p ¬jA,

(10) x �p ¬j(A←j B) iff x 2p ¬jB or x �p ¬jA,

(11) x �p ¬j¬jA iff x �p A,

(12) x �p ¬j�jA iff ∃y∈W (R(x, y) and y �p ¬jA),

(13) x �p ¬j♦jA iff ∀y∈W (R(x, y) implies y �p ¬jA),

(14) x �p ¬k(A ∧j B) iff x �p ¬kA and x �p ¬kB,

(15) x �p ¬k(A ∨j B) iff x �p ¬kA or x �p ¬kB,

(16) x �p ¬k(A→j B) iff x 2p ¬kA or x �p ¬kB,

(17) x �p ¬k(A←j B) iff x �p ¬kA and x 2p ¬kB,

(18) x �p ¬k¬jA iff x 2p A,

(19) x �p ¬k�jA iff ∀y∈W (R(x, y) implies y �p ¬kA),

(20) x �p ¬k♦jA iff ∃y∈W (R(x, y) and y �p ¬kA).

If we consider non-standard modalities as well, then the following clauses are appropriate:

(21) x �p BjA iff ∀y∈W (R(x, y) implies y �p A) or ∀y∈W (R(x, y) implies y 2p A),

(22) x �p ¬jBjA iff ∃y∈W (R(x, y) and y �p ¬jA) and ∃y∈W (R(x, y) and y 2p ¬jA),

(23) x �p ¬kBjA iff ∀y∈W (R(x, y) implies y �p ¬kA) or ∀y∈W (R(x, y) implies y 2p ¬kA),

(24) x �p IjA iff ∃y∈W (R(x, y) and y �p A) and ∃y∈W (R(x, y) and y 2p A),

(25) x �p ¬jIjA iff ∀y∈W (R(x, y) implies y �p ¬jA) or ∀y∈W (R(x, y) implies y 2p ¬jA),

(26) x �p ¬kIjA iff ∃y∈W (R(x, y) and y �p ¬kA) and ∃y∈W (R(x, y) and y 2p ¬kA),

(27) x �p ◦jA iff x 2p A or ∀y∈W (R(x, y) implies y �p A),

(28) x �p ¬j◦jA iff x �p ¬jA and ∃y∈W (R(x, y) and y 2p ¬jA),

(29) x �p ¬k◦jA iff x 2p ¬kA or ∀y∈W (R(x, y) implies y �p ¬kA),

(30) x �p •jA iff x �p A and ∃y∈W (R(x, y) and y 2p A),

(31) x �p ¬j•jA iff x 2p ¬jA or ∀y∈W (R(x, y) implies y �p ¬jA),

(32) x �p ¬k•jA iff x �p ¬kA and ∃y∈W (R(x, y) and y 2p ¬kA),

(33) x �p ◦̃jA iff x �p A or ∀y∈W (R(x, y) implies y 2p A),

(34) x �p ¬j ◦̃jA iff x 2p ¬jA and ∃y∈W (R(x, y) and y �p ¬jA),

(35) x �p ¬k◦̃jA iff x �p ¬kA or ∀y∈W (R(x, y) implies y 2p ¬kA),

(36) x �p •̃jA iff x 2p A and ∃y∈W (R(x, y) and y �p A),

(37) x �p ¬j •̃jA iff x �p ¬jA or ∀y∈W (R(x, y) implies y 2p ¬jA),

(38) x �p ¬k•̃jA iff x 2p ¬kA and ∃y∈W (R(x, y) and y �p ¬kA),

(39) x �p ∼jA iff ∃y∈W (R(x, y) and y 2p A),

(40) x �p ¬j∼jA iff ∀y∈W (R(x, y) implies y �p A),

(41) x �p ¬k∼jA iff ∃y∈W (R(x, y) and y 2p ¬kA).

An LM -formula A is true in a MMLS5
n -model 〈W,R,�p〉 iff x �p A for any x ∈ W , and is MMLS5

n -
valid in a frame 〈W,R〉 iff it is true for every paradefinite valuation �p on this frame.

Obviously, we can omit the relation R in this conditions, since R = W ×W ; e.g.:

• x �p ¬k�jA iff ∀y∈W y �p ¬kA,
• x �p ¬k♦jA iff ∃y∈W y �p ¬kA.

If in the above described model 〈W,R,�p〉 there is no restriction on R, then it is a MMLK
n -

model; if R is reflexive and transitive, then it is a MMLS4
n -model, and so on. We can obtain modal

multilattice logics by changing the properties of R in the same way as we can obtain modal logics
based on classical propositional logic.
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Theorem 173 (Strong soundness). Let L be MMLS5
n or any of its extensions by non-standard

modalities or a logic obtained from MMLS5
n by the replacement of �j and ♦j with non-standard

modalities. For each finite set of hypersequents H ∪ {H}, if H `HSL H, then H |=L H.

Proof. Similarly to Theorem 5.

Theorem 174 (Strong completeness). Let L be MMLS5
n or any of its extensions by non-standard

modalities or a logic obtained from MMLS5
n by the replacement of �j and ♦j with non-standard

modalities. For each finite set of hypersequents H ∪ {H}, if H |=L H, then H `cf
HSL H.

Proof. Similarly to Theorem 6. We use the notions and notation from the proof of Theorem 6.
Instead of writing 〈W,R,�p〉 we write just 〈W,�p〉, since R = W ×W .

We need to change a bit the definition of a valuation. Let �p be the valuation such that w �p p
iff p ∈ Γw and w �p ¬jp iff ¬jp ∈ Γw, for each p ∈ P . We need to prove that for each A ∈ F and
each maximal component w of H∗ it holds that:

(a) A ∈ Γw implies w �p A,

(b) A ∈ ∆w implies w 2p A.

The proof is by induction on the complexity of A. The basic case follows from the definition of
�p.

Let A be ¬k(B ∧j C). Assume that ¬k(B ∧j C) ∈ Γw. Suppose that ¬kB 6∈ Γw or ¬kC 6∈ Γw.
By the maximality of w, the sequent ¬kB,¬kC,Γw ⇒ ∆w is not a component of H∗. Since H∗
is an F-hypersequent, H `cf

HSL H∗ | ¬kB,¬kC,Γw ⇒ ∆w. By the rule (¬k∧j ⇒), H `cf
HSL H∗ |

¬k(B ∧j C),Γw ⇒ ∆w. By (IW⇒), H `cf
HSL H∗ | Γw ⇒ ∆w, i.e., H `cf

HSL H∗ | w. By (EC),
H `cf

HSL H∗. Contradiction. Hence, ¬kB ∈ Γw and ¬kC ∈ Γw. By the induction hypothesis,
w �p ¬kB and w �p ¬kC. Thus, w �p ¬k(B ∧j C).

Assume that ¬k(B ∧j C) ∈ ∆w. Suppose that ¬kB 6∈ ∆w and ¬kC 6∈ ∆w. By the maximality of
w and the fact that H∗ is an F-hypersequent, H `cf

HSL H∗ | Γw ⇒ ∆w,¬kB and H `cf
HSL H∗ |

Γw ⇒ ∆w,¬kC. By the rule (⇒ ¬k∧j), H `cf
HSL H∗ | Γw ⇒ ∆w,¬k(B ∧j C). By (IW⇒) and

(EC), H `cf
HSL H

∗. Contradiction. Hence, ¬kB ∈ ∆w or ¬kC ∈ ∆w. By the induction hypothesis,
w 2p ¬kB or w 2p ¬kC. Thus, w 2p ¬k(B ∧j C).

Let A be ¬j¬jB. Suppose that ¬j¬jB ∈ Γw. Assume that B 6∈ Γw. By the maximality of w
and the fact that H∗ is an F-hypersequent, H `cf

HSL H∗ | B,Γw ⇒ ∆w. By the rule (¬j¬j ⇒),
H `cf

HSL H∗ | ¬j¬jB,Γw ⇒ ∆w. By (IW⇒) and (EC), H `cf
HSL H∗. Contradiction. Hence,

B ∈ Γw. By the induction hypothesis, w �p B. Thus, w �p ¬j¬jB.
Suppose that ¬j¬jB ∈ ∆w. Assume that B 6∈ ∆w. Similarly to the previous case, use the rule

(⇒ ¬j¬j) to obtain a contradiction. Then B ∈ ∆w and w 2p B. Thus, w 2p ¬j¬kB.
Let A be ¬j¬kB. Suppose that ¬j¬kB ∈ Γw. Assume that B 6∈ ∆w. By the maximality of w

and the fact that H∗ is an F-hypersequent, H `cf
HSL H∗ | Γw ⇒ ∆w, B. By the rule (¬j¬k ⇒),

H `cf
HSL H∗ | ¬j¬kB,Γw ⇒ ∆w. By (IW⇒) and (EC), H `cf

HSL H∗. Contradiction. Hence,
B ∈ ∆w. By the induction hypothesis, w 2p B. Thus, w �p ¬j¬kB.

Suppose that ¬j¬kB ∈ ∆w. Assume that B 6∈ Γw. Similarly to the previous case, use the rule
(⇒ ¬j¬k) to obtain a contradiction. Hence, B ∈ Γw, then w �p B. Thus, w 2p ¬j¬kB.

Let A be ¬j♦jB. Suppose that ¬j♦jB ∈ Γw. Assume that there is y ∈ W such that ¬jB 6∈ Γy.
Since y is maximal, ¬jB,Γy ⇒ ∆y 6∈ H∗. Since H∗ is an F-hypersequent, H `cf

HSL H
∗ | ¬jB,Γy ⇒

∆y. By the rule (¬j♦j ⇒), H `cf
HSL H∗ | ¬j♦jB ⇒ | Γy ⇒ ∆y. Then H `cf

HSL H∗ | A ⇒ | y.
By the rule (Merge), H `cf

HSL H
∗ | A ⇒. Since A ∈ Γw, by (IW⇒), (⇒IW), and (Merge), we get

H `cf
HSL H

∗ | w. By (Merge), H `cf
HSL H

∗. Contradiction. Hence, for each x ∈ W , ¬jB ∈ Γx. By
the induction hypothesis for B, for each x ∈ W , x �p ¬jB. Thus, w �p A.
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Suppose that ¬j♦jB ∈ ∆w. Assume that ⇒ ¬jB 6∈ H∗. Then H `cf
HSL H

∗ | ⇒ ¬jB, since H∗ is
an F-sequence. By (⇒ ¬j♦j), H `cf

HSL H
∗ | ⇒ ¬j♦jB, i.e., H `cf

HSL H
∗ | ⇒ A. Since A ∈ ∆w, by

(EC) and (Merge), H `cf
HSL H

∗ | w. By (Merge), H `cf
HSL H

∗. Contradiction. Hence,⇒ ¬jB ∈ H∗.
Therefore, there is a y ∈ W such that ¬jB ∈ ∆y. By the induction hypothesis for B, there is a
y ∈ W such that y 2p ¬jB. Therefore, w 2p A.

The other cases are similar to the previous ones.
The last step of the proof is to show that 〈W,�p〉 is a model for H , but not for H. Analogous

to Theorem 6.

Corollary 175. Let L be MMLS5
n or any of its extensions by non-standard modalities or a logic

obtained from MMLS5
n by the replacement of �j and ♦j with non-standard modalities. For each

finite set of hypersequents H ∪ {H}, H `HSL H iff H |=L H.

Proof. Follows from Theorems 173 and 174.

Corollary 176. Let L be MMLS5
n or any of its extensions by non-standard modalities or a logic

obtained from MMLS5
n by the replacement of �j and ♦j with non-standard modalities. Let H ∪{H}

be a finite set of hypersequents. Then H `HSL H implies H `cf
HSL H.

Proof. Follows from Theorem 6. Notice that in the proof of this theorem, (Cut) is used only once in
order to show that 〈W,ϑ〉 is a model for H and is applied only to formulas which belong to H .

Corollary 177 (Cut admissibility). Let L be MMLS5
n or any of its extensions by non-standard

modalities or a logic obtained from MMLS5
n by the replacement of �j and ♦j with non-standard

modalities. Let H be a hypersequent. Then `HSL H implies that there is a cut-free proof of H in
HSL.

Proof. Put H = ∅ in the proof of Theorem 174. Then the only application of (Cut) in the proof of
this Theorem disappears.

Corollary 178 (Negated subformula property). Let L be MMLS5
n or any of its extensions by non-

standard modalities or a logic obtained from MMLS5
n by the replacement of �j and ♦j with non-

standard modalities. For every hypersequent which is provable in HSL, there is a proof such that
each formula which occurs in it is either a subformula or a j-negation of the formulas which occur
in the conclusion.

Proof. Follows from Corollary 177 and the fact that in any of the rules of HSL each formula which
occurs in the premises is either a subformula or a j-negation of the formulas which occur in the
conclusion.

Theorem 179 (Constructive elimination of cuts). Let L be MMLS5
n or any of its extensions by

non-standard modalities or a logic obtained from MMLS5
n by the replacement of �j and ♦j with

non-standard modalities. If a derivation D in HSL has an application of (Cut), then it can be
transformed into a cut-free derivation D′.

Proof. By the same method as Theorem 13. The complexity c(A) of an LM -formula A is defined as
follows:

• c(p) = c(¬jp), for any p ∈ P ,
• if A 6= p and A 6= ¬jp, then c(¬jA) = c(A) + 1,

• c(MjA) = c(A) + 2, where Mj is any modal operator among the considered for MMLn,

• c(A ?j B) = c(A) + c(B) + 2, where ?j is any binary connective of MMLn.
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Other notions from the proof of Theorem 13 do not require changes. Right and left reduction
lemmas have to be proved. The proofs are analogous to proofs of Lemmas 11 and 12. As an example,
we consider a case needed for a proof of the right reduction lemma.

The rule of the last inference of D2 is (¬j♦j ⇒).
Subcase 1. A is principal in D2 and A = ¬j♦jB. The last step of D2 is as follows:

¬jB,¬j♦jB
i1 ,AΘΛ

1 | . . . | ¬j♦jBin ,AΘΛ
n | G

¬j♦jB ⇒ | ¬j♦jBi1 ,AΘΛ
1 | . . . | ¬j♦jBin ,AΘΛ

n | G
The last step of D1 is as follows:

⇒ ¬jB | H
⇒ ¬j♦jB | H

We should obtain
⇒ | AΘΛ

1 | . . . | AΘΛ
n | H | G

By the induction hypothesis, we obtain a derivation D3 of the following hypersequent such that
r(D3) ≤ c(A):

¬jB,AΘΛ
1 | AΘΛ

2 | . . . | AΘΛ
n | H | G.

Using this hypersequent and ⇒ ¬jB | H, by (Cut) and other structural rules, we get

⇒ ¬jB | H ¬jB,AΘΛ
1 | . . . | AΘΛ

n | H | G
AΘΛ

1 | . . . | AΘΛ
n | H | H | G

AΘΛ
1 | . . . | AΘΛ

n | H | G
⇒ | AΘΛ

1 | . . . | AΘΛ
n | H | G

Subcase 2. The rule of the last inference of D2 is (¬j♦j ⇒) and the principal formula in D2 is
not A. The last step of D2 is as follows:

¬jB,Ai1 ,AΘΛ
1 | . . . | Ain ,AΘΛ

n | G
¬j♦jB ⇒ | Ai1 ,AΘΛ

1 | . . . | Ain ,AΘΛ
n | G

The last step of D1 is as follows: Γ⇒ ∆, A | H.
We should obtain

¬j♦jB ⇒ | AΓ∆
i1
× AΘΛ

1 | . . . | AΓ∆
in × AΘΛ

n | H | G

By the induction hypothesis, we obtain a derivation D3 of the following hypersequent such that
r(D3) ≤ c(A):

¬jB,AΓ∆
i1
× AΘΛ

1 | AΓ∆
i2
× AΘΛ

2 | . . . | AΓ∆
in × AΘΛ

n | H | G.

Applying (¬j♦j ⇒), we get the required result.

We can extend our approach to other modal multilattice logics: MMLK
n and its reflexive, serial,

transitive, and symmentic extensions. We are not going to offer algebraic semantics for them (al-
though an algebraic semantics for MMLS4

n has already been mentioned), but have briefly noted how
Kripke semantics can be obtained for them. Now we would like to formulate nested sequent calculi
for these logics. First, we need to formulate a nested sequent calculus for MMLK

n . Second, to obtain
nested sequent calculi for its reflexive, serial, transitive, and symmentic extensions, we need to add
the corresponding special structural rules described in Chapter 1. The nested sequent calculus for
MMLK

n contains all the axioms and rules (in a nested sequent formulation) for MLn as well as the
following modal rules. The non-negated modal rules:

[�j ⇒]
N[�jA,Γ⇒ ∆/(A,Θ⇒ Λ/X)]

N[�jA,Γ⇒ ∆/(Θ⇒ Λ/X)]
[⇒ �j]

N[Γ⇒ ∆/⇒ A]

N[Γ⇒ ∆,�jA]
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[♦j ⇒]
N[Γ⇒ ∆/A⇒]

N[♦jA,Γ⇒ ∆]
[⇒ ♦j]

N[Γ⇒ ∆,♦jA/(Θ⇒ Λ, A/X)]

N[Γ⇒ ∆,♦jA/(Θ⇒ Λ/X)]

The jj-negated modal rules:

[¬j�j ⇒]
N[Γ⇒ ∆/¬jA⇒]

N[¬j�jA,Γ⇒ ∆]
[⇒ ¬j�j]

N[Γ⇒ ∆,¬j�jA/(Θ⇒ Λ,¬jA/X)]

N[Γ⇒ ∆,¬j�jA/(Θ⇒ Λ/X)]

[¬j♦j ⇒]
N[¬k♦jA,Γ⇒ ∆/(¬jA,Θ⇒ Λ/X)]

N[¬j♦jA,Γ⇒ ∆/(Θ⇒ Λ/X)]
[⇒ ¬j�j]

N[Γ⇒ ∆/⇒ ¬jA]

N[Γ⇒ ∆,¬j♦jA]

The kj-negated modal rules:

[¬k�j ⇒]
N[¬k�jA,Γ⇒ ∆/(¬kA,Θ⇒ Λ/X)]

N[¬k�jA,Γ⇒ ∆/(Θ⇒ Λ/X)]
[⇒ ¬k�j]

N[Γ⇒ ∆/⇒ ¬kA]

N[Γ⇒ ∆,¬k�jA]

[¬k♦j ⇒]
N[Γ⇒ ∆/¬kA⇒]

N[¬k♦jA,Γ⇒ ∆]
[⇒ ¬k♦j]

N[Γ⇒ ∆,¬k♦jA/(Θ⇒ Λ,¬kA/X)]

N[Γ⇒ ∆,¬k♦jA/(Θ⇒ Λ/X)]

As an example, we give the rules for Bj:

[⇒ BjL ]
N[Γ⇒ ∆/A⇒]

N[Γ⇒ ∆,BjA]
[⇒ BjR ]

N[Γ⇒ ∆/⇒ A]

N[Γ⇒ ∆,BjA]

[Bj ⇒]
N[BjA,Γ⇒ ∆/(A,Θ⇒ Λ/X)] N[BjA,Γ⇒ ∆/(Ξ⇒ Π, A/Y )]

N[BjA,Γ⇒ ∆/(Θ⇒ Λ/X); (Ξ⇒ Π/Y )]

[⇒ ¬jBj]
N[Γ⇒ ∆,¬jBjA/(¬jA,Θ⇒ Λ/X)] N[Γ⇒ ∆,¬jBjA/(Ξ⇒ Π,¬jA/Y )]

N[Γ⇒ ∆,¬jBjA/(Θ⇒ Λ/X); (Ξ⇒ Π/Y )]

[¬jBj ⇒L]
N[Γ⇒ ∆/¬jA⇒]

N[¬jBjA,Γ⇒ ∆]
[¬jBj ⇒R]

N[Γ⇒ ∆/⇒ ¬jA]

N[¬jBjA,Γ⇒ ∆]

[⇒ ¬kBjL ]
N[Γ⇒ ∆/¬kA⇒]

N[Γ⇒ ∆,¬kBjA]
[⇒ ¬kBjR ]

N[Γ⇒ ∆/⇒ ¬kA]

N[Γ⇒ ∆,¬kBjA]

[¬kBj ⇒]
N[¬kBjA,Γ⇒ ∆/(¬kA,Θ⇒ Λ/X)] N[¬kBjA,Γ⇒ ∆/(Ξ⇒ Π,¬kA/Y )]

N[BjA,Γ⇒ ∆/(Θ⇒ Λ/X); (Ξ⇒ Π/Y )]

The rules for other non-standard modalities can be found in an analogous fashion.

Theorem 180. Let ♣ ∈ {�,♦,B,I, ◦, •, ◦̃, •̃,∼, ∼̇} and X1, . . .Xm ∈ {T,D,4,B}. For any nested
sequent N, if NSMMLKX1,...X♣m

n ` N, then MMLKX1,...X♣m
n |= N.

Proof. Similarly to Theorem 27.

Theorem 181. Let ♣ ∈ {�,♦,B,I, ◦, •, ◦̃, •̃,∼, ∼̇}. For any nested sequent N, if MMLKX1,...X♣m
n |=

N, then NSMMLKX1,...X♣m
n ` N.

Proof. Similarly to Theorems 36 and 174.

Theorem 182 (Constructive elimination of cut). Let ♣ ∈ {�,♦,B,I, ◦, •, ◦̃, •̃,∼, ∼̇} and X1, . . .Xm ∈
{T,D,4,B}. Any derivation D in NSMMLKX1,...X♣m

n ` N can be effectively transformed into a
derivation D′, where there is no application of the rule of cut.

Proof. Similarly to Theorem 41.
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Let us describe natural deduction systems for modal multilattice logics. For the sake of simplicity,
we restrict the language LM : we do not consider (co)implications and suppose that only one type
of modalities is in the language (either necessity or possibility for MMLS5

n and only necessity for
MMLS4

n ). Our rules for modalities are based on Biermann and de Paiva’s rules [16] and their Kürbis’
[100] adaptation for S5, rules for other connectives are based on Milne’s [125] natural deduction
system for classical logic.

The non-negated rules:

(∧jI)a

[A ∧j B]a

D1 D2 D3

A B C

C
(∧jE)a,b

[A]a[B]b

D1 D2

A ∧j B C

C

(∨jI1)a

[A ∨j B]a

D1 D2

A C

C
(∨jI2)a

[A ∨j B]a

D1 D2

B C

C
(∨jE)a,b

[A]a [B]b

D1 D2 D3

A ∨j B C C

C

The jj-negated rules:

(¬j ∧j I1)a

[¬j(A ∧j B)]a

D1 D2

¬jA C

C
(¬j ∧j I2)a

[¬j(A ∧j B)]a

D1 D2

¬jB C

C

(¬j ∧j E)a,b

[¬jA]a [¬jB]b

D1 D2 D3

¬j(A ∧j B) C C

C

(¬j ∨j I)a

[¬j(A ∨j B)]a

D1 D2 D3

¬jA ¬jB C

C
(¬j ∨j E)a,b

[¬jA]a[¬jB]b

D1 D2

¬j(A ∨j B) C

C

(¬j¬jI)a

[¬j¬jA]a

D1 D2

A C

C
(¬j¬jE)a

[A]a

D1 D2

¬j¬jA C

C

The kj-negated rules:

(¬k ∧j I)a

[¬k(A ∧j B)]a

D1 D2 D3

¬kA ¬kB C

C
(¬k ∧j E)a,b

[¬kA]a[¬kB]b

D1 D2

¬k(A ∧j B) C

C

(¬k ∨j I1)a

[¬k(A ∨j B)]a

D1 D2

¬kA C

C
(¬k ∨j I2)a

[¬k(A ∨j B)]a

D1 D2

¬kB C

C
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(¬k ∨j E)a,b

[¬kA]a [¬kB]b

D1 D2 D3

¬k(A ∨j B) C C

C

(¬j¬kI)

[A]a [¬j¬kA]b

D1 D2

C C

C
(¬j¬kE)

D1 D2

¬j¬kA A

C

The non-negated modal rules:

(�jGI)a,b

[�jA]a [B1 . . . Bm]b

D0 D1 . . .Dm D
F B1 . . . Bm A

F
(�jGE)a

[A]a

D1 D2

�jA F

F

(♦jGI)a

[♦jA]a

D1 D2

F A

F
(♦jE)a

[A,B1 . . . Bm]a

D0 D1 . . .Dm E
♦jA B1 . . . Bm C

C

where B1, . . . , Bm are exactly the undischarged assumptions in D and A,B1, . . . , Bm in E. For
MMLS4

n , Bi (1 6 i 6 n) are required to be of the form �jDi or ¬k�jDi and C to be of the form
♦jD or ¬k♦jD. For MMLS5

n , A,B1, . . . , Bm, C are required to be modalized.
The jj-negated modal rules:

(¬j�jGI)a

[¬j�jA]a

D1 D2

F ¬jA
F

(¬j�jE)a

[¬jA,B1 . . . Bm]a

D0 D1 . . .Dm E
¬j�jA B1 . . . Bm C

C

(¬j♦jGI)a,b

[¬j♦jA]a [B1 . . . Bm]b

D0 D1 . . .Dm D
F B1 . . . Bm ¬jA

F
(¬j♦jGE)a

[¬jA]a

D1 D2

¬j♦jA F

F

where B1, . . . , Bm are exactly the undischarged assumptions in D and ¬jA,B1, . . . , Bm in E. For
MMLS4

n , Bi (1 6 i 6 n) are required to be of the form �jDi or ¬k�jDi and C to be of the form
♦jD or ¬k♦jD. For MMLS5

n , ¬jA,B1, . . . , Bm, C are required to be modalized.
The kj-negated modal rules:

(¬k�jGI)a,b

[¬k�jA]a [B1 . . . Bm]b

D0 D1 . . .Dm D
F B1 . . . Bm ¬kA

F
(¬k�jGE)a

[¬kA]a

D1 D2

¬k�jA F

F

(¬k♦jGI)a

[¬k♦jA]a

D1 D2

F ¬kA
F

(¬k♦jE)a

[¬kA,B1 . . . Bm]a

D0 D1 . . .Dm E
¬k♦jA B1 . . . Bm C

C

where B1, . . . , Bm are exactly the undischarged assumptions in D and ¬kA,B1, . . . , Bm in E. For
MMLS4

n , Bi (1 6 i 6 n) are required to be of the form �jDi or ¬k�jDi and C to be of the form
♦jD or ¬k♦jD. For MMLS5

n , ¬kA,B1, . . . , Bm, C are required to be modalized.
The notion of a deduction is defined in a standard way.
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Theorem 183. Let L ∈ {MMLS5
n ,MMLS4

n }. For every finite set of LM -formulas Γ and every
LM -formula A, it holds that Γ |=L A iff Γ `L A in a natural deduction system for L.

Proof. By induction on the height of the derivation, one can show that Γ `L A in a natural deduction
system for L iff Γ `L A in a hypersequent (nested) sequent calculus for L. By Theorems 173, 174,
180, 181, Γ `L A in a hypersequent (nested) sequent calculus for L iff Γ |=L A.

Our normalisation proof is an adaptation of Kürbis’ proof [103] for Milne’s [125] natural deduction
system for classical logic.

The notion of a maximal formula is understood according to Definition 95. A degree of a formula
is understood in the same way as the complexity of a formula in the constructive proof of cut
elimination for MMLS5

n .

Definition 184 (Segment). [103, Definitions 5, 6, the notation adjusted] A segment is a sequence
of formula occurrences C1...Cm in a deduction such that either

(i) m > 1 and for all i < m, Ci is an arbitrary premise of an application of a rule and Ci+1 is its
conclusion, and Cn is not an arbitrary premise of an application of a rule; or

(ii) m > 1 and C1 is the conclusion of (¬k¬jE) and for all i < m, Ci is an arbitrary premise of
an application of a rule and Ci+1 is its conclusion, and Cn is not an arbitrary premise of an
application of a rule.

The length of a segment is the number of formula occurrences of which it consists, its degree the
degree of any such formula.

A maximal segment is a segment the last formula of which is the major premise of an elimination
rule.

Every conclusion of the rule (¬k¬j) forms part of a segment of length 1.
The notions of a deduction in normal form and a rank of a deduction are understood according

to Definitions 54 and 55.
At the first stage of a proof of the normalisation theorem for MMLS5

n and MMLS4
n (we prove the

theorem for both logics simultaneously due to the formulation of modal rules) we need to observe that
any application of a general introduction rule can be transformed into one that discharges exactly
one major assumption. It can be done in the same way as in Lemma 98. In this proof we apply
“unique discharge convention on introduction rules: every application of an introduction rule for ∗
discharges exactly one formula occurrence of the form A ∗B or ∗A.” [103, p. 115]

Let us present reduction procedures for maximal formulas.
The maximal formula is of the form ¬j(A ∨j B). Convert the deduction on the left into the

deduction on the right:

D1

¬jA
D2

¬jB

[¬j(A ∨j B)]a

[¬jA]b[¬jB]c

D3

C
(¬j ∨j E)b,c

C
D4

D
(¬j ∨j I)a

D

99K

D1

¬jA
D2

¬jB
D3

C
D4

D

The maximal formula is of the form ¬j¬kA. Convert the deduction on the left into the deduction
on the right:
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[A]a

D1

C

[¬j¬kA]b
D2

A
(EFQ)

B
D3

C (EM )a,b
C

99K

D2

A
D1

C
D∗3
C

where D∗3 is is defined via the ρ-reduction described in the normalisation proof for Segerberg’s system
on p. 55.

The other cases are considered similarly. Let us give a list of them:4

• the maximal formula is of the form A ∧j B,
• the maximal formula is of the form A ∨j B,
• the maximal formula is of the form ¬j(A ∧j B),
• the maximal formula is of the form ¬k(A ∧j B),
• the maximal formula is of the form ¬k(A ∨j B),
• the maximal formula is of the form �jA,
• the maximal formula is of the form ¬j�jA,
• the maximal formula is of the form ¬k�jA.5

Let us present permutative reduction procedures for maximal segments.
A major premise of an elimination rule is concluded by (¬j¬kE). Then remove the application

of the elimination rule and use (¬j¬kE) to conclude the discharged assumption(s) of (one of) the
side deductions concluding with an arbitrary premise instead. As an example, consider the following
case:

D1

¬j¬kA
D2

A

¬k�jA

[¬kA]a

D3

F

F

99K

D1

¬j¬kA
D2

A

¬kA
D3

F

The major premise of (¬j�jE) is derived by (¬k ∨j I1).

E1

¬kA

[¬k(A ∨j B)]a

E2

¬j�jA a

¬j�jA

D1 . . .Dm

B1 . . . Bm

[¬jA,B1 . . . Bm]b

H1

C
H2

E
b

E

where ¬jA,B1, . . . , Bm are exactly the undischarged assumptions in H1. For MMLS4
n , Bi is required

to be of the form �jDi or ¬k�jDi (1 6 i 6 m) and C to be of the form ¬j�jD. For MMLS5
n ,

A,B1, . . . , Bm, C are required to be modalized or negatively modalized.
We change the order of the applications of the rules as follows:

E1

¬kA

[¬k(A ∨j B)]a

E2

¬j�jA
D1 . . .Dm

B1 . . . Bm

[¬jA,B1 . . . Bm]b

H1

C

[C]c

H2

E
b,c

E a

E
4Actually, the cases with A ∧j B and A ∨j B coincide with the cases for A ∧B and A ∨B from [103].
5If one considers the language with ♦j instead of �j , then one should consider analogous cases with maximal

formulas of the forms ♦jA, ¬j♦jA, and ¬k♦jA; these cases are treated analogously too.



4.5. PROOF SYSTEMS FOR MODAL MULTILATTICE LOGICS 147

where ¬jA,B1, . . . , Bm are exactly the undischarged assumptions in H1. For MMLS4
n , Bi is required

to be of the form �jDi or ¬k�jDi (1 6 i 6 m) and C to be of the form ¬j�jD. For MMLS5
n ,

¬jA,B1, . . . , Bm, C are required to be modalized or negatively modalized.
The major premise of (¬j�jE) is derived by (¬j�jE).

E0

¬j�jE
E1 . . .El

F1 . . . Fl

[¬jE,F1 . . . Fl]
a

H1

G

[G]c

H3

¬j�jA a,c

¬j�jA
D1 . . .Dm

B1 . . . Bm

[¬jA,B1 . . . Bm]b

H2

C

[C]d

H4

I
b,d

I

where ¬jE,F1 . . . Fl and ¬jA,B1, . . . , Bm are exactly the undischarged assumptions in H1 and H2,
respectively. For MMLS4

n , Bi is required to be of the form �jDi or ¬k�jDi, Fi is required to be of
the form �jHi or ¬k�jHi (1 6 i 6 m), C to be of the form ¬j�jD, G to be of the form ¬j�jJ . For
MMLS5

n , ¬jA,B1, . . . , Bm, C,¬jE,F1 . . . Fl, G are required to be modalized or negatively modalized.
We change the order of the applications of the rules as follows:

E0

¬j�jE
E1 . . .El

F1 . . . Fl

[¬jE,F1 . . . Fl]
a

H1

G

[G]c

H3

¬j�jA
D1 . . .Dm

B1 . . . Bm

[¬jA,B1 . . . Bm]b

H2

C

[C]d

H4

I
b,d

I
a,c

I

where ¬jE,F1 . . . Fl and ¬jA,B1, . . . , Bm are exactly the undischarged assumptions in H1 and H2,
respectively. For MMLS4

n , Bi is required to be of the form �jDi or ¬k�jDi, Fi is required to be of
the form �jHi or ¬k�jHi (1 6 i 6 m), C to be of the form ¬j�jD, G to be of the form ¬j�jJ . For
MMLS5

n , ¬jA,B1, . . . , Bm, C,¬jE,F1 . . . Fl, G are required to be modalized or negatively modalized.
The other cases are considered similarly.

Theorem 185. Any deduction in MMLS5
n or MMLS4

n can be converted into a deduction in normal
form.

Proof. By induction over the rank of deductions. Similarly to Theorem 56.

Corollary 186. If D is a deduction in normal form, then all major premises of elimination rules
are (discharged or undischarged) assumptions of D.

Theorem 187. Deductions in normal forms in in MMLS5
n or MMLS4

n have the negation subformula
property.

Proof. By inspection of the rules and an induction over the order of branches.



148 CHAPTER 4. PROOF SYSTEMS FOR SELECTED MANY-VALUED MODAL LOGICS



Chapter 5

Conclusion

This section is devoted to two issues: summing up the results presented in this work and pointing
out the possible routes of future research arising from the obtained results.

The following results were described in the thesis:

1. We have developed cut-free hypersequent (the case of S5-based logics) and nested sequent
calculi (the case of weaker logics) for modal logics with non-standard modalities (such as
(non)contingency, essence, accidence, and negated modalities). The completeness proof has
been established by a Hintikka-style argument. As a consequence, the cut admissibility theorem
has been obtained. Besides, syntactic constructive cut admissibility proof by Metcalfe, Olivetti,
and Gabbay’s strategy [123] has been given. This result is published in [148].

2. We have proved the normalisation theorem for classical propositional logic formulated in the
language with at least one n-ary operator (Segerberg’s [173] natural deduction system) as well
as its modal extensions (S5 and S4 with necessity, possibility, and negated modalities being
formulated via general introduction and elimination rules). The standard subformula property
has been established.

3. We have generalised natural deduction systems from [145] for three-valued logics: first, instead
of unary and binary connectives as in [145] we have considered n-ary ones; second, we have
shown that the approach developed in [145] works not only for  Lukasiewicz’s, Heyting’s, and
Bochvar’s negations, but some other ones described by Omori and Wansing in [141], including
Post’s negation [159] and its converse [147]. We have proved the normalisation theorem for all
the three-valued logics in question. The negation subformula property has been established.
This result is an extended version of a joint work with Nils Kürbis [106] which is now under
review.

4. We have transformed the above-mentioned natural deduction systems into cut-free sequent
calculi; it has been shown that the resulting sequent calculi are equivalent to the original
natural deduction systems. Then we have justified their completeness together with the cut
admissibility theorem by Hintikka-style argument and given a constructive cut admissibility
argument by Metcalfe, Olivetti, and Gabbay’s strategy.

5. By the same method, we have provided a constructive cut admissibility proof for Kooi and
Tamminga’s sequent calculi [97] (in their paper, only semantic cut admissibility had been given)
for four-valued logics (n-ary extensions of the negation fragment of FDE). We have shown that
their approach can be built on the basis of the negation fragments of other four-valued logics;
we have considered the negations studied by Omori and Wansing in [141]. For these additional
logics, the constructive proof of the cut admissibility theorem and a Hintikka-style completeness
proof have been given.

149
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6. On the basis of Kooi and Tamminga’s sequent calculi for four-valued logics [97] we have in-
troduced natural deduction systems for the same logics. We have proved the normalisation
theorem for them. The negation subformula property has been established.

7. We have supplied all the three- and four-valued logics in question with many-valued modalities
(S5-style and weaker ones; both standard and non-standard ones). Cut-free hypersequent
and nested sequent calculi have been developed. Hintikka-style completeness and constructive
cut admissibility have been given for them, and the negation subformula property has been
established. The natural deduction systems for the S5-style modal many-valued logics with
standard and negated modalities have been given with the proof of the normalisation theorem.

8. Last but not least, we have investigated modal multilattice logics, an algebraic generalisation
of Belnap-Dunn-style four-valued modal logics. Cut-free hypersequent and nested sequent
calculi have been given. Due to the machinery of nested sequent calculi we have managed to
consider more modal multilattice logics (based on normal modal logics) than is usually done
in the literature on this topic [92, 71, 69]. In the joint works by the author and Grigoriev
[71, 69] the main results, such as Kripke completeness and cut admissibility, were obtained
via embedding functions. Here we have given new proofs for these results: by Hintikka-style
argument. Besides, we have presented a constructive cut admissibility proof based on Metcalfe,
Olivetti, and Gabbay’s strategy. We have developed natural deduction systems for multilattice
logic and some of its modal extensions: the normalisation theorem and the negation subformula
property have been established.

The following topics may become the subject of future research arising from the above-described
results:

1. The formulation of the natural deduction systems for S5-modal logics with non-standard modal-
ities different from the negated ones: non(contingency), essence, and accident. The develop-
ment of the natural deduction systems for modal logics with non-standard modalities based
on the logics weaker than S5. The establishing of the normalisation theorem and subformula
property for them.

2. An analogous task can be formulated for many-valued and multilattice modal logics.

3. An adaptation of correspondence analysis for non-deterministic logics, in particular for the
logics with non-deterministic negations investigated by Omori and Wansing [141].

4. A generalisation of the technique of correspondence analysis for the case of k-valued logics.

5. An investigation of first-order extensions of the logics considered in this text. In particular,
one may explore the systems of neutral free logic on their basis, which can be useful for the
development of the theory of definite descriptions.

6. A formulation and investigation of proof-searching algorithms for the considered logics, and even
the development of a computer programme on their basis automatically building proofs in the
proof systems in question. Notice that in the papers [149, 150, 151] Shangin and the author
of this text have explored sound, complete, and terminating proof-searching algorithms for
obtained via correspondence analysis natural deduction systems for some many-valued logics.
Although all the logics considered in this thesis are known to be decidable, one may develop,
on the basis of the presented proof systems, decidability algorithms for these logics.

7. The development of proof-theoretic semantics for the logics for which we have proved normal-
isation and the (negation) subformula property.
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8. The development of analytic tableaux for the logics considered in this text. One may think also
about other less popular types of calculi, such as synthetic tableaux, resolution, or Rasiowa-
Sikorski’s calculi.

9. On the basis of the established cut admissibility and subformula property theorems, one may try
to prove the interpolation theorem, Beth’s definability property, and Maksimova’s separation
property for the logics in question.
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[19] Boričić, B., Ilić, M. “An Alternative Normalization of the Implicative Fragment of Classical
Logic”, Studia Logica 103 (2015): 413–446.

[20] Borkowski, L., and J. S lupecki. “A logical system based on rules and its applications in teaching
mathematical logic”, Studia Logica 7 (1958): 71–113.

[21] Brady R.T. “Completeness proofs for RM3 and BN4”, Logique et Analyse 25 (1982): 51–61.
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