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1. Introduction

By a Calabi-Yau threefold we mean a complex projective threefold X with KX = 0 

and h1(OX) = h2(OX) = 0. We require X to be normal yet we allow it to have some 

singularities, namely ordinary double and ordinary triple points. A primitive contraction is 

a birational morphism between Calabi-Yau threefolds decreasing the Picard rank by one. 

A contraction is of type I if it contracts a finite s et o f c urves t o p oints, o f t ype I I i f it 

contracts a divisor to a point and of type III if it contracts a divisor to a curve. It is known 

that certain deformation classes of Calabi-Yau threefolds are linked with each other by so 

called extremal transitions, that is primitive contractions followed by a smoothing. These 

transitions are called conifold if the singularities in the image of the contraction are ordinary 

double points. In this thesis we aim to discuss the process of obtaining Calabi-Yau threefolds 

through a conifold transition involving a type III primitive contraction. This procedure can 

be easily generalized to complete intersection Calabi-Yau threefolds or Calabi-Yau threefolds 

in weighted projective spaces giving rise to even more examples.

There are two main problems we are interested in. First is the construction of new 

Calabi-Yau threefolds. We manage to obtain a family of Calabi-Yau threefolds containing 

a cone which give rise to Calabi-Yau threefolds of Picard ranks 3 and 2. We believe some 

of our examples are new as we have not located CY3’s with the same Hodge numbers as 

obtained by us in the databases [43] and [44]. The second problem is the following. What 

is the possible genus of a curve C ⊂ Y that is the image of a divisor E ⊂ X through the type III 

contraction ρ : X → Y ? The highest genus we managed to obtain is 31 (see 6.10). It remains 

an open problem if there is a bound to this genus.

Our results are in the spirit of the so-called Reid’s fantasy. M. Reid in [33] has con-

jectured that there could exist an irreducible space parametrizing non-algebraic Calabi-Yau 

threefolds such that any Calabi Yau threefold would be a small resolution of a degeneration 

of this family to something with ordinary double points. We can think of this space as a 

graph with each node representing one deformation class of a family of algebraic Calabi-Yau 

threefolds with edges between these nodes giving extremal transitions. Namely let M1 and
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M2 be two deformation classes of Calabi-Yau threefolds. We have an arrow M1 → M2 if for 

a general element X̃ ∈ M1 there is a birational contraction morphism π : X̃ → Y and a flat 

family Y → (∆, 0) such that Y0 Y and Yt ∈ M2 for general t ∈ ∆. Finding these edges 

is an actively studied problem. Wilson in [42] provided a detailed description of the Kähler 

cones of Calabi-Yau threefolds, showing in particular that codimension one faces of their 

cones correspond to primitive contractions. In [17] and [18] Gross described the conditions 

for the primitive Calabi-Yau threefolds obtained by such contraction to be smoothable thus 

giving a link between nodes of the graph.

It is known that for a smooth X a type III contraction ρ : X → Y of a divisor E 

to a smooth curve C deforms to a type I contraction providing g(C) > 1 [17, Thorem 1.3]. 

It is conjectured [39, Conjecture 6.7] that a sufficiently general transition arising from the 

type III contraction deforms to a conifold transition and we show in Corollary 2.21 that in 

the case of surfaces ruled over smooth curves of genus > 1 this conjecture holds.

We provide the formula describing the change in the Hodge numbers of threefolds 

under this transition. Namely we show

Proposition 1.1. Let X be a smooth Calabi-Yau threefold containing a smooth surface E 

ruled over a smooth curve C of genus g(C) > 1, let ρ : X → Y be the primitive type III 

contraction of E and let Ỹ  be the smooth Calabi-Yau obtained by deforming Y . Then

(1) h1,1(Ỹ ) = h1,1(X)− 1

(2) h1,2(Ỹ ) = h1,2(X) + 2pa(C)− 3.

To provide examples of type III smoothable contractions we study the geometry of

Calabi-Yau threefolds containing a cone over a curve. We choose quintic threefolds, complete

intersection of a quadric and a quartic in P5, complete intersection of two cubics in P5

and a sextic hypersurface in weighted projective space P(1 : 1 : 1 : 1 : 2) as the source

of examples. Quintic threefolds are natural objects being hypersurfaces of a relatively low

degree yet having interesting properties. The geometry of quintic threefolds has been studied

for example in [1] or [31]. Nodal quintic threefolds have been analysed by Friedman [14]
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and van Straten [41], while the problem of the possible number of triple points on such a

hypersurface has been the subject of a recent work by Kloosterman and Rams [30]. We hope

that our results may find applications in solving that last problem.

We resolve singularities of threefolds with triple point at the vertex of a cone to

obtain smooth threefolds containing a ruled surface and use type III contractions to construct

new Calabi-Yau threefolds with Picard rank 2. The procedure we describe is illustrated on

the diagram below. Here X̄ is a threefold containing a cone over a smooth curve with a

triple point at the vertex of the cone and nodes on its surface, X̃ is the threefold obtained

by blowing up the triple point of X̄ and X is the one obtained by the small resolution of

nodes of X̃, Y is the image of the type III contraction of X and Ỹ is a smooth deformation

of Y .

X

X̄ X̃ Y Ỹ ∈ Y

ρ

We provide a generalization of the results of Cynk from [4] and [5] regarding the

Hodge numbers of resolutions of singularities of hypersurfaces in P4 with ordinary double

and triple points (Theorem 5.5) and use it to calculate the Hodge numbers of the threefolds

obtained from quintics in question. In a similar manner we adapt the formula to calculate the

Hodge numbers of threefolds obtained from the resolution of complete intersection threefolds

containing ordinary double and triple points as the only singularities (Theorem 5.14). In our

analysis we complete the results of Kapustka and Kapustka from [23] and [24] where they

discuss primitive type II contractions of Calabi-Yau threefolds, describe their images and

smoothing families and give the formula for calculating the Hodge numbers of the threefolds

obtained through this process.

We also apply the formulas we have obtained to calculate the Hodge numbers

of resolutions of certain Calabi-Yau threefolds admitting ordinary triple points and not

containing a cone but having huge defect. We present these results in Table 9.2.
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The last part of the thesis is dedicated to the discussion of the bounds pertaining

the number of ordinary triple points on Calabi-Yau threefolds. Our interest was sparked by

the aforementioned results of Kloosterman and Rams regarding the possible number of triple

points on a Calabi-Yau quintic threefold in P4 [30]. They have proven that a quintic threefold

with a reducible hyperplane section cannot have more that 10 ordinary triple points as the

only singularities and constructed the example where this limit is reached. The question

whether or not a quintic threefold can have 11 ordinary triple points remains open, it is

known that the number 12 is impossible. There already exists an extensive literature on the

subject of the number of double points on Calabi-Yau threefolds for example [20][23][41] yet

the exact bounds are still difficult to obtain. For instance in the case of quintic threefold

the best result is given by van Straten in [41] with 130 double points and it is not known

whether or not it is indeed the upper bound. The case of ordinary triple points should be in

general simpler, yet is much less disussed. We analyse the bound for complete intersection

threefolds X2,4, X3,3 ⊂ P5 and for the sextic hypersurface in P(1 : 1 : 1 : 1 : 2); the results

are summarised in table 15.

All calculations were performed using the Macaulay2 software [16]. Numerical re-

sults are presented in the tables at the end of the paper. Parts of this thesis have been

published as [21].
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2. Preliminary notions

Throughout the thesis we always work over the field of complex numbers C. We

work in either the projective space Pn or in a weighted projective space P(1 : 1 : 1 : 1 : 2).

By an algebrac variety we mean an integral reduced scheme of a finite type.

Definition 2.1. A Calabi-Yau threefold is a projective complex variety X of dimension 3,

possibly singular, with KX = 0 and h1(OX) = 0.

Definition 2.2. A primitive contraction of a Calabi-Yau threefold X is a birational mor-

phism f : X → Y to a variety Y such that ρ(Y ) = ρ(X)− 1 where ρ(X) is the rank of the

Picard group of X. A contraction is of type:

• I if it contracts a finite set of curves to points

• II if it contracts a divisor to a point

• III if it contracts a divisor to a curve.

We recall [39, Definition 1.4].

Definition 2.3. A process T (X,Y, Ỹ ) of going from X to Ỹ , where π : X → Y is a

birational contraction of a Calabi-Yau X onto a normal variety Y and Ỹ is a smoothing of

Y , is called a geometric transition. A transition is called conifold if Y admits only ordinary

double points as singularities.

Definition 2.4. A non-singular Calabi-Yau threefold X is primitive if there is no birational

contraction X → Y with Y smoothable to a Calabi-Yau threefold which is not deformation

equivalent to X.
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2.1. Kähler cone of Calabi-Yau threefolds.

Definition 2.5. Let X be a normal variety over a field K of dimension d. We have:

• Zd−1(X) - the group of Weil divisors of X that is the free abelian group generated

by prime divisors on X

• Div(X) - the group of Cartier divisors of X that is H0(X,Rat(X)×/O×
X) where

Rat(X)× is the sheaf of nonzero rational functions on X

• Pic(X) - the group of line bundles on X

• Z1(X) - the free abelian group generated by reduced irreducible curves on X.

Denote by ≡ the relation of numerical equivalence on both Z1(X) and Pic(X). Then we

additionally have:

• N1(X)R := {Pic(X)/ ≡} ⊗ R

• N1(X)R := {Z1(X)/ ≡} ⊗ R

• N̄E(X) - the closed covex cone in N1(X)R generated by reduced irreducible curves

on X.

Definition 2.6. We say that a divisor L ∈ N1(X)R is nef if L ≥ 0 on N̄E(X).

Definition 2.7. We say that a line bundle L on X is very ample if it is basepoint-free and

the associated morphism fL : X → Pn is the closed immersion. We say that L is ample if

for some r > 0 its tensor power L ⊗r is very ample.

Definition 2.8. We say that a divisor L ∈ N1(X)R is ample if the corresponding line

bundle L := O(L) is ample.

Theorem 2.9 (Kleiman’s criterion for ampleness). A divisor L ∈ Pic(X) is ample if and

only if the numerical class L ∈ N1(X)R gives a positive function on N̄E(X)− {0}.

Definition 2.10. We define the following subsets of N1(X)R:

• Amp(X) the ample cone of X
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• Nef(X) the nef cone of X

as the convex cones of ample (respectively nef) divisors of X.

By Kleiman’s Theorem we can consider the nef cone as the closure of the ample

cone.

Definition 2.11. Let X be a compact Kähler manifold. The Kähler cone K(X) ⊂ H1,1(X)∩

H2(X,R) is the cone of Kähler classes of X.

Under the inclusion N1(X)R ⊂ H1,1(X,R), we have Amp(X) = K(X) ∩ N1
R(X).

For simply connected Calabi-Yau threefolds, since h1(OX) = h2(OX) = 0, the map c1 :

Pic(X) → H2(X,Z) is an isomorphism. Thus N1(X)R → H1,1(X,R) is surjective and so

Amp(X) = K(X). It follows that Nef(X) = K̄(X).

Definition 2.12. Let X be a Calabi-Yau threefold. We define the cubic cone of X as

W = {T ∈ Pic(X)⊗ R : T 3 = 0}.

We have [42, Fact 1]:

Fact 2.13. The cone K̄(X) is locally rational polyhedral away from W , the codimension one

faces corresponding to primitive birational contractions on X.

To reiterate, we can think of elements of the cone K(X) as of the ample divisors

on a Calabi-Yau threefold X and the elements of its closure K̄(X) as of nef divisors on X.

Thus, by the above fact, nef divisors lying on a codimension one faces of the Kähler cone

not in W provide primitive birational contractions of X. By that we mean that if D is such

a divisor then the complete linear system |mD| for some m ∈ N>0 gives rise to a morphism

Φ|mD| : X → Y which is a primitive birational contraction.
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2.2. Deformation theory and type III contractions. We use [17] and [18] as the ref-

erence.

When we perform a birational contraction of a Calabi-Yau threefold X we obtain a

threefold Y with at worst canonical singularities. We are not always able to find a smoothing

of such threefold. For Y having canonical singularities Def(Y ) can still be singular. It turns

out that the obstructions to deforming Y are the obstructions to deforming a germ of the

singularities of Y . In most cases though, we are able to control the codimension of the

singular locus of Def(Y ) and this allows us to discuss the locus where it is smooth, thus

providing a smoothing of a contracted manifold. For details we refer to [18, Section 2].

We are interested in the case when the contraction is of type III yet it turns out

it is closely linked with the case of contractions of type I as will be shown below. We

recall facts about deformations with a view towards the existence of a smoothing of a type

III contraction. In particular we quote results describing when the type I contraction is

smoothable and discuss how the type III contraction deforms to a type I contraction.

First we consider the deformation space of the resolution X of Y and recall when

it is smooth. This will be useful when dicussing the deformation of a type III contraction

when the curve in the image has g = 1. Let (Y, 0) be a germ of an isolated rational complex

threefold singularity. Let π : (X, 0) → (Y, 0) be the resolution of singularities. There is a

natural map of germs of analytic spaces Def(X) → Def(Y ) as H1(OX) = 0. We denote by

OY,0 the local ring of Y at the origin with maximal ideal m. Let T 1 be the tangent space of

Def(Y ). We quote the following results without proofs.

Lemma 2.14. [18, Lemma 3.2] The tangent space to Def(X) is H0(R1π∗TX). The tangent

space of Def(Y ) is T 1 = H2
Z(TY ) where TY = HomOY

(Ω1
Y ,OY ), and we have an exact

sequence of OY,0-modules

H0(R1π∗TX) → H2
Z(TY ) → T ′ → 0

with T ′ = Ker(H2
E(TX) → H0(R2π∗TX)), Z = Sing(Y ) and E the exceptional locus of π.

The map H0(R1π∗TX) → H2
Z(TY ) is the differential of the map Def(X) → Def(Y ).
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Proposition 2.15. [18, Proposition 3.4] Let X → Y be a crepant resolution of an isolated

rational Gorenstein threefold singularity (Y, 0). Then Def(X) is non-singular.

We move on to discuss the conditions under which the image of the contraction is

smoothable. We have the following results:

Theorem 2.16. Let X be a non-singular Calabi-Yau threefold, and π : X → Y be a bi-

rational contraction morphism such that Y has isolated, canonical, complete intersection

singularities. Then there is a deformation of Y which smooths all singular points of Y ex-

cept possibly the ordinary double points of Y . In particular, if Y has no ordinary double

points, then Y is smoothable.

Theorem 2.17. Suppose π : X → Y is a primitive type I contraction. Then Y is smoothable

unless π is the contraction of a single P1 to an ordinary double point.

The above result will be particulary usefull as it shows that in case the type III

contraction deforms to a type I contraction with more than one P1 being contracted the

image threefold will be smoothable. We have the following theorems:

Theorem 2.18. [18, Theorem 1.1] Let π : X → Y be a primitive type III contraction of

a non-singular Calabi-Yau threefold X, contracting an exceptional divisor E to a curve C.

Then:

(1) C is a non-singular curve

(2) π : E → C is a conic bundle over C, and each fibre is either a non-singular conic,

a union of two lines meeting at a point or a doubled line. If the general fibre is a

non-singular curve, then E is normal. In this case, the singularities which appear on

E are An (n ≥ 0) singulariteis at the singular point of a reducible reduced fibre, or

two A1 singularities on a non-reduced fibre.

Theorem 2.19. [18, Theorem 1.2] Let π : X → Y be a primitive type III contraction of

a non-singular Calabi-Yau threefold X contracting a divisor E to a curve C. Let Ẽ be the
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normalization of E, f : Ẽ → X the induced map, and Ẽ → C̃ → C the Stein factorizarion.

Then the image of the natural map Def(f) → Def(X) has codimension ≥ g(C̃).

Theorem 2.20. [18, Theorem 1.3] Let π : X → Y be a primitive type III contraction

of a non-singular Calabi-Yau threefold X contracting a divisor E to a smooth curve C. If

g(C) ≥ 1, then Y is smoothable.

We do not quote the proof of the theorems. Instead we discuss certain aspects of

the deformation of the contraction to provide a better understanding of our situation. Let

X → ∆ be a Kuranishi family for X = X0. By [18, Proposition 1.2] and [32, Proposition

6.5] we know that the locus in ∆ where E deforms in the family of X is of codimension g.

When X contains a smooth surface ruled over a curve of genus g > 1 then for every fibre

Z of E and some disc around 0 we have that every Xt in the family contains a curve which

is a deformation of Z. More specifically, following discussion in [42, Section 4], fibers over

2g − 2 points of C will extend sideways in the family of deformations X . From this we

conclude that whenever g > 1, the primitive type III contraction of π : X0 → Y0 deforms to

a family of type I contractions πt : Xt → Yt of 2g−2 fibers. This means that for general t the

contraction Xt → Yt is a small (type I) primitive contraction and unless Sing(Yt) consists

of exactly one ordinary double point, Yt is smoothable. As E is normal Yt cannot have only

one ODP so the general Yt is smoothable. In the case when g(C) = 1, we have that neither

E nor L deforms in the family X and that Xt → Yt is an isomorphism for general t and so

Y is smoothable.

We recall the [39, Conjecture 6.7] that a sufficiently general transition arising from

the type III contraction deforms to a conifold transition. From the above discussion it follows

that this conjecture holds for surfaces ruled over smooth curves of genus > 1. Namely we

have proved:

Corollary 2.21. Let T (X,Y, Ỹ ) be a geometric transition. Assume that the contraction

π : X → Y contracts a smooth surface E ruled over a smooth curved C of genus > 1. Then

T deforms to a conifold transition.
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3. Calabi-Yau threefolds containing a cone and a triple point

The main goal of this section is to construct Calabi-Yau threefolds X admitting

type three contractions. Namely we construct Calabi-Yau threefolds containing a cone E

over some curve, such that the vertex of the cone is an ordinary triple point of X̄ which

we denote O. A general threefold in question will also have ordinary double points lying

on this cone. We perform resolution of singularities of X̄, first by blowing up O and then

by performing a small blow-up of double points. Both of those do not affect the canonical

class of X and thus we obtain another Calabi-Yau threefold X̃ contating a smooth ruled

surface Ẽ arising as the strict transform of the cone E. Then we find a contraction morphism

π : X̃ → Y that takes Ẽ to a curve. Depending on the genus of the curve the variety Y may

be smoothable and in case it is we obtain another example of a smooth Calabi-Yau threefold

that we denote Ỹ .

Throughout the thesis we label the variables in P4 or P(1 : 1 : 1 : 1 : 2) (P5) with

x, y, z, t, u (w). When we discuss the degrees of the curves we mean the degree in P3 unless

otherwise stated.

3.1. Quintic threefolds containing a ruled surface and a triple point. We define

X̄5 = V (F ) where

F = u2F3 + uF4 + F5

is a homogenous polynomial of degree 5 with V (Fi)’s being smooth degree i surfaces in

P3 (and so Fi are independent of u) containing a smooth curve C. As our construction

requires this curve to be simultaneously contained in degree 3, 4 and 5 surfaces, we limit

ourselves to the curves of degree ≤ 15. Choosing a higher degree curve would mean that

V (F3) ⊂ V (F4, F5) and so in particular

V (F ) = V (F3) ∪ V (u2 + uF1 + F2)

with F4 = F1F3 and F5 = F2F5 would be reducible. In choosing the particular curves, we

follow the classification of possible genus-degree combinations of curves in P3 in [20]. We
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do not claim this list is complete. We construct the curves as ones living on a cubic surface

in P3 either by intersecting it with some other surface or by pulling back a curve on P2

under the blow up of 6 points in general position as for example in [22, V 4.7]. In Table 2

we provide the list of curves that serve as a basis for our construction. The table gives the

curve coordinates in Picard group of a cubic surface as well as its genus g(C) and canonical

class KC . In general by Ci we mean a curve of degree i. The curve Ca,b is obtained as an

intersection of degree a, b surfaces in P3 and TC is a twisted cubic. Whenever we discuss

more than one curve of a given degree we add a capital letter to the index to distinguish

them. When we refer to the specific quintic X̄5 (or its resolution X5) containing a given

curve Ci we denote it by X̄5(i) (resp X5(i)). The same applies for Y5(i) and Ỹ5(i) - threefolds

obtained by a contraction and respective smoothing. On the other hand when the context

is clear we drop 5 from the index for brevity.

We denote by E the cone over C ⊂ X̄ and by O its vertex [0 : 0 : 0 : 0 : 0 : 1] being

a triple point of X̄. We assume that there are no additional one-dimensional components

of V (F3) ∩ V (F4) ∩ V (F5) ⊂ P3 apart from C. It may happen, though, that there are some

isolated points in the intersection V (F3)∩ V (F4)∩ V (F5) which we call excess points. They

give rise to lines passing through the triple point of X̄ that are otherwise disjoint from Ē.

Furthermore, the threefold X̄ can have other singular points than the vertex of the cone but

we show that they are ordinary double points admitting a small resolution. To that aim let

Λ be a complete linear system of quintic threefolds containing a cone Ē over a given curve

C with an ordinary triple point at the vertex of the cone.

Theorem 3.1. Let C, a smooth irreducible curve, be the only one-dimensional component

of V (F3)∩V (F4)∩V (F5) ⊂ P3. Let Ē be the cone over C in P4. Let Λ be the complete linear

system of quintic threefolds containing Ē with an ordinary triple point at the vertex of Ē. A

general element X̄ of Λ outside of the vertex of the cone has at worst nodes as singularities.

Furthermore, the singular points of X̄ lie on the cone Ē.



15

Proof. Let π : P̃4 → P4 be the blow-up of the P4 along Ē and let E be the exceptional

divisor. We will show that Ē is the base locus of Λ - the complete system of quintic threefolds

containing Ē and thus obtain that |π∗Λ−E| is base-point free outside of the Z := π−1(O).

From the assumption V (F3) ∩ V (F4) ∩ V (F5) ⊂ P3 has no one-dimensional com-

ponents outside of C. It is straightforward that

X = V (F ) = V (x2F3 + xF4 + F5) ∈ Λ

Consider

Xm = V (Fm)

with

Fm = (u2F3 + uF4 + F5 + F3Gm)

where Gm is a degree two polynomial in x, y, z, t. We see Xm ∈ Λ. The restriction of V (Gm)

to the cubic surface V (F3) ⊂ P3 can be considered an element of an ample linear system

|2H| with empty base locus and thus there are no isolated excess lines in the base locus of

Λ meaning Ē = BsΛ as required. Note that Z = π−1(O) is in the base locus of the system

|π∗Λ− E|.

Consider the morphism Φ : P̃4 → PN given by the linear system π∗Λ−E. Restrict

this morphism to Φ|P̃4\Z : P̃4\Z → PN . For each point p of Ē outside of O we obtain

that this restriction embeds π−1(p) as a line P1 in PN . Let PN∗ be the dual projective

space to PN . We work in the product Ē\O×PN∗ with natural projections π1,π2. We define

I = {(p,H) : π−1(p) ⊂ H}. It follows that π−1
1 (p) is the set of hyperplanes containing a

fixed line so the dimension of π−1
1 (p) is N − 2 which says that the set of quintics having

point p as a singularity is of codimension 2. Furthermore we get

dim I = dim Ē\O +N − 2 = 2 +N − 2 = N

and thus dimπ−1
2 (H) = 0 for general H. We have that π1(π

−1
2 (H)) is the singular locus of

the quintic X̄ whose small resolution is birational to the hyperplane section H ∩Φ(P̃4), and

so for a general H the singular locus is at most zero-dimensional.
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At every point of the cone Ē which is not its vertex we can find quintics which have

different tangent directions. To see that, observe that if X̄ = V (F ) is the quintic containing

Ē and P is the point on Ē we have F (P ) = 0 where

F = u2F3 + uF4 + F5

and Fi are homogeneous polynomials of degree i as above. We can substitute F̃4 = F4 +

F1F3 and F̃5 = F5 + F2F3 where F1 and F2 are general linear and quadratic homogeneous

polynomials thus obtaining equation of another quintic containing the cone Ē but having

different tangent direction at P . For any α ∈ {x, y, z, t} we obtain

∂F̃

∂α
=

∂F

∂α
+ F3(u

∂F1

∂α
+

∂F2

∂α
) +

∂F3

∂α
(uF1 + F2).

Since F3 is the equation of a smooth cubic surface it is enough that we have F2(P ) ̸=

−uF1(P ) for the statement to be true. This construction also shows that for each point

P ∈ Ē there exists a quintic containing Ē which is not singular at P . By the Bertini

theorem, we conclude that general X̄ has at worst double points as singularities but for the

vertex of the cone. What is more the singularities lie on the cone Ē and outside of Ē the

general X̄ is smooth.

By following the argument of [28, Theorem 4.4], we conclude that a generic element

X̄ of Λ has only singularities of cA type as for every point P of Ē but for the vertex we can

find X̄P which is not singular at P . From [9, Claim 2.2], we have that P ∈ Ē is a singular

point of a general X̄ ∈ Λ if and only if X̄ ′ such that π(X̄ ′) = X̄ contains the whole fiber

π−1(P ).

Now let P be a singular point (different than the vertex of the cone) of a general

quintic X̄ containing Ē. We blow up the whole of Ē and obtain P1 as a fiber of π over

P . From this and the previous paragraph, we see that a general element X of Λ admits a

small resolution (outside O) with P1 as the exceptional locus. Using Bertini we see that a

general element of |π∗Λ−E| cuts E along a nonsingular surface and so the normal bundle of

C contains a subbundle OC(−1). Following the argument from [24, Theorem 2.1] we know

that in a small resolution of a cA type singularity there is a curve with normal bundle
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O(−1)
⊕

O(−1) or O
⊕

O(2). In our case this has to be the former of the two which means

the singularities of a generic X̄ outside the vertex of the cone are ordinary double points. □

Fact 3.2. For nearly all quintic threefolds X̄, we have found that the intersection of

V (F3), V (F4) and V (F5) consists of the curve C and a finite number of points (we call

them excess points). Thus, these quintic threefolds contain not only a cone Ē but also a

set of lines all passing through the vertex O. The exceptions are quintics containing curves

C10B, C11, C3,4 and C3,5 as for them there are no excess points and thus no excess lines.

Denote the hyperplane section of cubic surface by HD and the class of a curve on D by C.

Then the number of excess points can be calculated using the excess intersection formula:

(4HD − C).(5HD − C) = 20H2
D − 9HD.C + C2 = 60− 9deg(C) + C2

which is indeed 0 in the cases listed above.

3.2. Complete intersection threefolds containing a cone and a triple point. We

discuss two complete intersection threefolds namely X̄2,4 and X̄3,3 in P5. Again we want to

focus on those containing a cone over a smoth curve with a triple point at the vertex of the

cone. We being with describing the construcion. We adapt similar notation convention as in

the case of quintic threefolds.

3.2.1. Complete intersection X2,4. We begin with a smooth curve C ⊂ P4. We find smooth

varieties Ai’s of degrees 1, 2, 3 and 4 in P4 containing this curve. Let Fi’s be polynomials in

5 variables defining Ai’s. Define X2 = V (wF1 + F2) ⊂ P5 and X4 = V (wF3 + F4) ⊂ P5.

Then O = [0 : 0 : 0 : 0 : 0 : 1] is the triple point of X4 and a smooth point on X2 and as

such it is an OTP for their complete intersection X̄2,4. The construction shows that X̄2,4

contains a cone E over a curve C whose vertex is the discussed OTP. The construction calls

for the curve to be actually contained in P3 ∼= V (F1). Since the complete intersection of

V (F1), V (F2) and V (F4) is a degree 8 curve we restrict ourselves to curves with degree ≤ 8.

Moreover, as this curve needs to be contained in V (F3) this limits the family of curves even

further. If we write F3 = F1G2+F2G1 with Gi homogeneous of degree i then the point O is

not an ordinary triple point on X2,4 as the exceptional divisor D over O contains a singular
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curve V (F2) ∩ V (G1). Thus the highest degree curve that we can use in our construction is

the complete intersection

C6 = V (F1) ∩ V (F2) ∩ V (F3).

In Table 5 we provide the list of curves that serve as a basis for our construction.

Theorem 3.3. Let C, a smooth irreducible curve be the only one-dimensional component

of the intersection of smooth hypersurfaces

V (F1) ∩ V (F2) ∩ V (F3) ∩ V (F4) ⊂ P4.

Let Ē be the cone over C in P5. Assume that a general quadric fourfold containing Ē are

smooth outside the vertex of Ē. Then a general complete intersection threefold X̄2,4 con-

taining Ē with a triple point at the vertex of the cone has at worst nodes as the remaining

singularities. Furthermore, the singular points of X̄2,4 lie on the cone Ē.

Proof. The proof mimics the proof of 3.1. We describe the steps that need slight modification.

Let X := X2 be a chosen, nonsingular quadric fourfould containing Ē. Let π :

X̃2 → X2 be the blow-up of the X2 along Ē and let E be the exceptional divisor. We will

show that Ē is the base locus of Λ - the complete system of complete intersection threefolds

of multidegree (2, 4) containing Ē and thus obtain that π∗Λ − E is base-point free outside

of the Z := π−1(O).

From the assumption

V (F1) ∩ V (F2) ∩ V (F3) ∩ V (F4) ⊂ P4

has no one-dimensional components outside of C. It is straightforward that X̄2,4 ∈ Λ. Con-

sider X̄4b = (wF3 + F4 + F2Gb) where Gb is a degree two polynomial in x, y, z, t, u. We see

X̄2,4b ∈ Λ. The restriction of V (Gb) to the cubic surface V (F3) ⊂ P3 can be considered an

element of an ample linear system |2H| with empty base locus and thus there are no isolated

excess lines in the base locus of Λ meaning Ē = BsΛ as required. Note that Z = π−1(O) is

in the base locus of the system π∗Λ− E.
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Consider the morphism Φ : X̃ → PN given by the linear system π∗Λ−E. Restrict

this morphism to Φ|X̃\Z : X̃\Z → PN . For each point p of Ē outside of O we obtain

that this restriction embeds π−1(p) as a line P1 in PN . Let PN∗ be the dual projective

space to PN . We work in the product Ē\O×PN∗ with natural projections π1,π2. We define

I = {(p,H) : p ⊂ H}. It follows that π−1
1 (p) restricted to I is the set of hyperplanes

containing a fixed line so the dimension of π−1
1 (p) is N − 2 which says that the set of X2,4

singular at p is of codimension 2. Furthermore we get

dim I = dim Ē\O +N − 2 = 2 +N − 2 = N

and thus dimπ−1
2 (H) = 0 for general H. We have that π1(π

−1
2 (H)) is the locus where X̄2,4

is singular and so for a general H this locus is at most zero-dimensional.

At every point of the cone Ē which is not its vertex we can find quartic fourfolds

with different tangent directions. Using similar equations to the ones above observe that if

X̄4 = V (wF3 + F4) is the quartic containing Ē we can write

X̄4ab = (wF3 + F4 + F1Ha + F2Gb)

with Ha general linear and Gb general quadric equation independent of w. Note that X̄4ab

contains the cone Ē but has different tangent direction at P - a point lying on Ē. This again

shows that for each point P ∈ Ē there exists an X̄2,4 containing Ē which is not singular

at P . By the Bertini theorem, we conclude that general X̄2,4 has at worst double points as

singularities but for the vertex of the cone. What is more the singularities lie on the cone Ē

and outside of Ē the general X̄2,4 is smooth.

The rest of the proof is identical to the last two paragraphs of the proof of Theorem

3.1. □

We assumed that general X2 and X4 containing Ē are smooth outside of the

vertex of the cone. We can see that this is not always the case. For instance let C3 be

a complete intersection of two hyperplanes H1, H2 and a cubic threefold in P4. We can

assume H1 = V (x), H2 = V (y). Then any quadric fourfold containing a cone over C3 in P5
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has equation of the form F2 = xA1 + yB1 with A1, B1 linear polynomials and so is singular

along a line x = y = A1 = B1 = 0. For all the curves in Table 5 we have managed, using

Macaulay2, to find smooth X2 and smooth X4 containing the cone Ē over it in P5. This

shows that a general X2 and X4 containing Ē are smooth and so the theorem works in cases

we analyse.

Fact 3.4. Similarily as in the case of quitinc threefolds and using notation from Fact 3.2

we obtain excess lines contained in X2,4. Straightforward calculations show there are

(2HD − C).(4HD − C) = 40− 6deg(C) + C2

of them.

3.2.2. Complete intersection X3,3. We begin again with a smooth curve C ⊂ P4. We find

four hypersurfaces V (A3) and V (B1), V (B2), V (B3) in P4 containing this curve. Now, let

X3 = V (A3) ⊂ P4 and Y3 = V (x25B1 + x5B2 +B3) ⊂ P5. We see that X3 has a triple point

at O = [0 : 0 : 0 : 0 : 0 : 1] and Y3 is smooth there thus giving us an ordinary triple point on

X̄3,3 = X3 ∩ Y3 with a cone E over a curve C. In this case our curve C can be of at most

degree 9 with C9 = V (F1) ∩ V (B3) ∩ V (A3) with B2 being a zero polynomial. Thus in our

construction we limit ourselves to curves of deg ≤ 9. In Table 6 we provide the list of curves

that serve as a basis for our construction.

In all cases we analyse one of the cubic fourfolds is a cone itself with a triple point

being its vertex (and smooth outside of it) while the other is smooth. We can denote them

X3 and Y3 respectively. We want to obtain a result similar to 3.1 and 3.3.

Theorem 3.5. Let C, a smooth irreducible curve be the only one-dimensional component

of the intersection of smooth hypersurfaces

V (F1) ∩ V (F2) ∩ V (F3) ∩ V (G3) ⊂ P4.

Let Ē be the cone over C in P5. Let X3 = V (G3) be a cone in P5 and let a general cubic

fourfold Y3 containing Ē be smooth outside the vertex of Ē. Then a complete intersection

threefold X̄3,3 of X3 and Y3 containing Ē with a triple point at the vertex of the cone has at
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worst nodes as the remaining singularities. Furthermore, the singular points of X̄3,3 lie on

the cone Ē.

Proof. The proof is similar to the one of 3.3 with minor adjustments. □

Fact 3.6. Again using notation from Fact 3.2 the number of excess lines in X̄3,3 is

(2HD − C).(3HD − C) = 30− 5deg(C) + C2.



22

3.3. Sextics in P(1 : 1 : 1 : 1 : 2) containing a ruled surface and a triple point. We

move on to the last case we consider, namely sextic threefold X6 in the weighted projective

space P(1 : 1 : 1 : 1 : 2). We use x, y, z, t to denote weight 1 an u to denote the weight 2

variable. Sometimes we write P to denote the WPS if the context is clear. We use as a main

reference regarding the weighted projective spaces.

Before we delve into details we establish some facts about the notation and the

general properties of weighted projective space P(1 : 1 : 1 : 1 : 2). Note that in this space

the divisors defined by degree one equations, for example V (x) are not Cartier. For every

degree one equation F1 we see that V (F1) necessarily passes through the singular point

[0 : 0 : 0 : 0 : 1] of the WPS. On the other hand the general element of |OP(2)|, that is

divisor equivalent to u = 0, will avoid the singular point of WPS and be Cartier. We keep

the notation 2H for elements of this system to be consistent with the weighted degree of

their defining equations. We keep in mind that V (F2) for a general degree 2 polynomial in

P(1 : 1 : 1 : 1 : 2) is isomorphic to P3. In particular this applies to V (t). Also note that even

though H is not Cartier on WPS it is Cartier when limited to X6 as HX avoids the singular

point of the projective space.

The system |O(2)| provides a natural embedding of WPS into P10. The image of

this embedding is the cone over a second Veronese embedding v(P3) ↪→ P9. In this setting

the sextic hypersurface can be considered as a triple section of a this cone and so a triple

cover of v(P3).

We consider X̄6 with the defining equation

F = t3A3 + t2(uB2 +B4) + t(u2C1 + uC3 + C5) + u3 + u2D2 + uD4 +D6

with Ai, Bi, Ci, Di weighted homogeneous polynomials of degree i independent of t, u. For

brevity let us denote the polynomials by A,B,C,D so that

F = t3A+ t2B + tC +D.
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Consider a smooth curve C contained in the intersection

V (A) ∩ V (B) ∩ V (C) ∩ V (D) ∈ P(1 : 1 : 1 : 2).

The ruled surface Ē over C defined as in previous examples is contained in X̄6 ∈ P(1 : 1 :

1 : 1 : 2).

Note, that as we want X̄6 and the curve C to avoid the singular point of WPS we

require u3 to appear in F6. Also, since at t = 1 we want locally the equation to be of degree

3 we cannot have terms with u2 in B or u in A. Setting t = 1 we see that the equation of a

tangent cone at O is given by

G3 = A3 + uB2 + u2C1 + u3.

We are more limited with the choice of curves as they need to avoid the singular

point of P(1 : 1 : 1 : 2) and so a term um has to appear in at least one equation generating

them for some m > 0. At this point we reach another obstruction. As equations defining C

have to be weighted homogeneous, then whenever we have um in the equation we see that

it is of degree 2m and so the other terms appearing in this polynomial are of non-weighted

degrees between m+1 and 2m. We can write F2m = um +G2m(x, y, z, u). The surface Ē in

P(1 : 1 : 1 : 1 : 2) is defined by the same equations as C. When we work in the affine chart

t = 1 variables are no longer considered with weights and so one of the equations defining

the tangent cone to Ē at O is just um (as other terms in F2m are of higher, non-weighted

degree). This means that after the blowup of O the intersection of E and D would be a

non-reduced curve and so E would not be a surface ruled over a smooth curve as required.

We are thus left with C being defined by the equation of weighted degree 2 in which the term

u appears in the first power. In particular we can assume that the curves in question are

contained in V (u) and so - by analogy with V (u) being isomorphic to P3 ⊂ P(1 : 1 : 1 : 1 : 2)

- can be treated as living in P2. As this curve has to be contained in a cubic surface this

leaves us with three possible curves, that is degree 1, 2 and 3 smooth planar curves. In this

setting the analogue of Theorem 3.1 works and so we obtain:
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Theorem 3.7. Let C, a smooth irreducible curve as above, be the only one-dimensional

component of

V (A) ∩ V (B) ∩ V (C) ∩ V (D) ⊂ P(1 : 1 : 1 : 2)

such that C ⊂ V (u). Let Ē be the surface defined by the same equations in P(1 : 1 : 1 : 1 : 2)

as C in P(1 : 1 : 1 : 2). Let Λ be the complete linear system of sextic threefolds containing Ē

with an ordinary triple point at O = [0 : 0 : 0 : 0 : 1 : 0]. A general element X̄ of Λ outside

of the triple point has at worst nodes as singularities. Furthermore, the singular points of X̄

lie on the surface Ē.

Note that contrary to the previous sintuations in the case of a sextic we do not

expect, and in our examples, do not obtain any excess components of the intersection of

surfaces in P(1 : 1 : 1 : 2). The intersection of 4 surfaces in P(1 : 1 : 1 : 2) is expected to be

empty and so in it there are no additional points outside of C.
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4. Intersection theory on Calabi-Yau threefolds containing a ruled

surface

We want to discuss the intersection theory on Calabi-Yau threefolds that we con-

tract. Let X̄ be a Calabi-Yau threefold containing a cone Ē over a curve C with triple point

O at its vertex as above. We consider threefold X obtained after, first, blowing up the point

O and then performing a small blow-up of nodes as ilustrated in the following diagram.

E X

Ẽ X̃

Ē X̄

π̃

π̄

4.1. Threefolds containing a ruled surface from quintic threefolds. Let π : X → X̄

be the composition of two blow-ups. Let HX be the strict transform of a hyperplane section

of X̄ ⊂ P4 and H ′
X the strict transform of the hyperplane section of X̄ passing through O.

Let E be the strict transform of the cone Ē over the curve C on X̄ and let D = π−1(O)

be the exceptional divisor, that is a smooth cubic surface contained in X coming from the

blow-up of the triple point O on X̄ We denote by l the fibre of E. We write g for genus of

C. In this part we want to show the following theorem.

Theorem 4.1. Let X be as above and assume additionally that h1,1(X) = 3. Then PicQ(X)

is generated by three divisors: HX , D, and E.

As h1,1(X) in the case of irreducible Calabi-Yau threefold is the rank of its Picard

group this theorem reduces to saying that the divisors in question are linearly independent.

To prove this we will need to calculate the intersections of divisors with themselves and with

curves on X. We provide these in the following lemmas.

Lemma 4.2. On X, a Calabi-Yau threefold with notations as above, we have:

(1) HX .D = 0;
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(2) HX .E = C + deg(C)l;

(3) D.E = C;

(4) E2 = KE = −2C + (KC − deg(C))l;

(5) E3 = K2
E = 8(1− g);

(6) D2 = KD;

(7) D3 = 3.

Proof. General hyperplane section of X̄ misses point O and thus HX misses D by properties

of pullback which proves (1). The exceptional divisor D intersected with E is precisely the

base curve C [22, V. Proposition 2.11.4] and thus D.E = C hence (2). Hyperplane passing

through O cuts Ē in exactly deg(Ē) = deg(C) fibers. By [12, Corollary 9.12], we can think

of a class D as a class HX −H ′
X and thus HX ∼ D +H ′

X and so

HX .E = (D +H ′
X).E = C + deg(C)l.

We calculate E2 from the adjunction formula.

KE = (KX + E)|E = E2

and similarily

K2
E = (KX + E)2|E = (K2

X + 2KXE + E2)|E = E2|E = E3

since KX = 0. Again by [22, V. Corollary 2.11] we know that E3 = 8(1− g). Similarily from

adjunction D2 = KD and since D is a smooth cubic surface KD ∼ −HD where HD is a

hyperplane section of a cubic. This is a standard use of adjunction as

KD ∼ OD(−3− 1 + deg(D)) = OD(−1) ∼ −HD.

Since D3 ∼ K2
D we obtain D3 ∼ (−HD)

2 = 3 which completes the proof. □

We use l|E to denote the class of a fiber or a ruled surface E in the N1(E)R. We

use analogous notation for the other curves on E and D.

Lemma 4.3. We have
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(1) l2|E = 0;

(2) C2
|E = −deg(C);

(3) l|E .C|E = 1;

(4) l|E .E = −2;

(5) C|E .E = KC + deg(C);

(6) D.C|D = −deg(C).

Proof. Points (1)-(4) are standard facts for ruled surfaces and for example found in [22, V.

Section 2]. To obtain point (5) we can restrict C|E .E|E and thus

C|E .KE = C.(−2C + (KC − deg(C)l) = 2deg(C) +KC − deg(C) = KC + deg(C).

By similar argument

D.C|D = KD.C|D = −HD.C|D = −deg(C).

□

We can proceed with

Proof of Theorem 4.1. We need to show that HX , D and E are linearly independent in

PicQ(X). To this end assume that

T = αHX + βD + γE

has zero intersection with classes of curves

{H2
X , HX .E,D2, D.E,E2}

for α, β, γ ∈ Q. We obtain the following set of equalities

(1) 5α+ dγ = 0

(2) dα+ (deg(KC)− d)γ = 0

(3) 3β − dγ = 0

(4) −dβ + (deg(KC) + d)γ = 0

(5) (deg(KC)− d)α+ (deg(KC) + d)β + (8− 8g)γ = 0.
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There are 3 possible solutions. Either α = β = γ = 0 which means HX , D and E are linearly

independent as desired, d = 0 which is a contradiction or d = 15 and g(C) = 31 which

means the curve C is the complete intersection of a cubic and a quintic surface meaning

E = 3HX − 5D and so the Picard group of X is no longer of rank 3. □

Let r denote the class of P1 coming from the small blow-up of a node of X lying

on the ruled surface. Recall that V (F3)∩V (F4)∩V (F5) contains C and some excess points,

thus X̄ contains a cone Ē over C and lines over excess points. We use t to denote the class

of the strict transform of one of these lines in X.

Lemma 4.4. On X as above we have

(1) HX .r = 0

(2) D.r = 0

(3) E.r = 1

Furthermore, we have the numerical equivalence of curves

(1) t ∼ l + 2r.

Proof. As r is the P1 replacing the point lying directly on Ē where Ē is smooth the equality

E.r = 1 is clear. General hyperplane section of X̄ misses this point giving HX .r = 0 and

since D is the blow-up of the vertex of Ē it misses r as well. One can easily derive the

numerical equivalence class of t by looking at the Table 1 which describes the intersection

of curves and divisors on X. □

We need to consider the curves on X that lie on the cubic surface D. Since HX|D =

0, D|D = −HD, E|D = C0 we see that restriction of PicQ(X) to PicQ(D) is at most two

dimensional (it may happen that the curve C0 is the multiple of a hyperplane section of D

and then it is one dimensional). We describe the intersection of curves on D with divisors

of X. We have HD = 3h− Σ6
i=1ei and C0 = ah− Σ6

i=1biei for a, bi ∈ Z. Then we show
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Lemma 4.5. For h, and ei, i ∈ 1, . . . , 6 generators of Pic(D) we have the following equiv-

alences on X:

(1) h ∼ −3
−3a+Σbi

C0 + (a+
3(a2−Σb2i )
−3a+Σbi

)r

(2) ei ∼ 1
3a−Σbi

C0 + (bi −
a2−Σb2i
3a−Σbi

)r.

Proof. We use Table 1 again to deduce the equivalences. The equivalence classes of h and ei

are well-defined as long as 3a−Σbi ̸= 0, but this expression is exactly deg(C) and so never

0. □
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4.2. Threefolds containing a ruled surface from complete intersection threefolds.

The discussion of intersection theory for X2,4 and for X3,3 is analogous to that for X5. The

only difference occurs in the proof of 4.1. In case of X2,4 intersection of

T = αHX + βD + γE

with {H2
X , HX .E,D2, D.E,E2} the result of first intersection is different while the remaining

four are the same as in the proof 4.1.

(1) 8α+ dγ = 0.

Now there are only 2 possible solutions. Either α = β = γ = 0 which means HX , D and E

are linearly independent as desired, d = 0 which is a contradiction. For X3,3 we get

(1) 9α+ dγ = 0.

The system of linear equations again has 2 solutions. Apart from the trivial one we have

d = 9, g(C) = 10 which happens when C is the complete intersection of two cubics and so

E is equivalent to the hyperplane section of X3,3.

4.3. Threefolds containing a ruled surface from sextic threefolds. The intersection

theory for X6 obtained by resolving singularities of a sextic in P(1 : 1 : 1 : 1 : 2) is completely

analogous to the one discussed above. The proof of the Theorem 4.1 applied here we solve

(1) 6α+ dγ = 0.

This system of equations again has no nontrivial solutions and so we see that HX , D and E

are linearly independent on X6 as desired.

4.4. Kähler cone of a Calabi-Yau threefold containing a ruled surface and a cubic

surface with Picard rank 3. For simplicity we write H instead of HX to denote the

pullback of the hyperplane section of X̄ on X. We claim the following:
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Theorem 4.6. Let X be X5, X2,4, X3,3 or X6 as above with Picard group generated by H,D

and E. Then the closure K̄ of the Kähler cone K is contained in the convex hull of three

rays. Two of the rays are generated by divisors H and H−D and don’t lie on the cubic cone

W . Moreover, these two rays belong to K̄ and span one of its faces.

Proof. Clearly H is nef on X as it is a pullback of a hyperplane section of X̄. It has zero

intersection with C0, r and every curve contained in D and positive intersection with other

curves. We can think of H −D as a pullback of a hyperplane section passing through the

point O. Thus it is enough to note that H −D has a non-negative intersection with curves

on D as

(H −D)|D = HD

and with curves on E as

(H −D)|E = (C0 + deg(C).l)− C0 = deg(C).l.

It also has a zero interesection with r. Observe that for X5 (X2,4, X3,3, X6) we have H3 =

5 > 0 (8, 9, 6 > 0 for respectively) and

(H −D)3 = H3 + 3H2.D + 3H.D2 +D3 = 5− 3 = 2 > 0

(5, 6, 3 > 0 respectively) so indeed these divisors do not lie on the cubic cone W . If we write

divisors in Pic(X) as αH + βD + γE, we see that any divisor such that γ = 0 has zero

intersection with r and divisors H and H −D satisfy this condition. Since

H.D = H.C = H.r = 0

and

(H −D).l = (H −D).r = 0,

we indeed have each of them contracting something else other than r and so they have to

lie on two faces of the cone, thus on the ray being the intersection of these faces.

Let us analyse the face of the cone on which there are divisors Q such that Q.l = 0.

In particular H −D lies on this face. It is straightforward to see that divisors Q have to be
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of the form

(2γ − β)H + βD + γE

for β, γ ∈ R (with some additional conditions on β and γ to maintain nefness which we do

not check for the moment). When γ = 0 we recover H −D or a multiple of thereof and so

we can focus on the case when γ ̸= 0. Since we are working on a cone, we can assume γ = 1

(it cannot be negative as then Q.r < 0) and so Q is of the form

(2− β)H + βD + E.

As each such Q has zero intersection with l and a positive intersection with r, we can only

hope for it to contract some other curve on D, be it C0 or something else. We use [22, V.

Corollary 4.13] to find the value of β for which Q|D stops being ample on D and denote this

divisor L. We know

Q|D ∼ ah− Σbiei

is ample on D if and only if bi > 0, a > bi + bj , and 2a > Σi ̸=jbi for all i, j. Note that

Q|D = −βHD + C0

and so for any given C0 the calculations are straightforward. As we obtain L we see that

any linear combination of L and H has to be zero on some set of curves on D (or D itself).

In the ideal situation L would be the third ray spanning the Kähler cone of X, and this is

the case when β < 2 as then the intersection with the curves outside of E and D is non

negative. This is not always true as evidenced by the Table 3. □

On Figure 1. we present the Kähler cone of X when L is the third spanning ray of

X. Note that the further analysis of contractions of X is not impeded should it happen that

there are some additional faces of K̄(X). We are mainly interested in the type III contraction

that is provided by divisors lying on the face contained between H −D and L.
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H −D

H

L

Figure 1. Kähler cone of X for L nef
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5. Hodge numbers of Calabi-Yau threefolds with double and triple points

Here we generalize formulas by Cynk concering the Hodge numbers of threefolds

containing ordinary double and ordinary triple points as the only singularities.

5.1. Hypersurfaces in weighted projective space. We base our calculations on [6].

In this work there are explicit results given for calculating Hodge numbers of resolutions

of singularities of threefolds containing only ordinary triple points as singularities in four

dimensional weighted projective spaces. We want to extend these results to encompass reso-

lutions of normal threefolds - particularly sextics - having ordinary double and triple points

as singularities. Note that these conditions imply that threefold X has to miss the singular

locus of the weighted projective space P as otherwise it would inherit its singularities. Our

work provides a slight generalization of results from [5] yet requiring a careful retracing of all

the steps taken in that work. We conduct the reasoning for a general threefold hypersurface

in weighted projective space and later apply it to sextic in P(1 : 1 : 1 : 1 : 2) and a quintic

threefold in P4.

For this and the following section we switch the notation for it to be consistent

with the usual convention of P̃ being the blowup of the projective space. Thus, let X be

the singular threefold in question, and let X̃ be its resolution. We denote by Pi’s the triple

points on X and by Qj ’s the double points. We use µk to denote the number of points of

multiplicity k. Then P = {P1, . . . , Pµ3} and Q = {Q1, . . . , Qµ2} constitute singular locus of

X which we denote Σ. Write π : P̃ → P for the blowup of the weighted projective space

in all singular points of X and denote the exceptional divisors of π with Ei = π−1(Pi),

Dj = π−1(Qj), E = E1 + . . . Eµ3 , D = D1, . . . , Dµ2 . For sets A,B of points on X and

non-negative integers m,n let JmA+nB denote the ideal sheaf of germs of regular functions

on P vanishing at all points of A to order at least m and at all points of B to order at least
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n. From the property of blow-up of we have

KP̃ ∼ π∗KP + 3E(1)

X̃ ∼ π∗X − 2D − 3E(2)

Since we are working in the weigthed projective space, which is singular - yet still normal

in our case - we consider sheaves Ω̄p
P and Ω̄p

P̃
of germs of p-forms on P and P̃. In generality,

for normal algebraic variety Y we have that Ω̄p
Y = j∗ΩReg(Y ), where j : Reg(Y ) → Y is the

inclusion. Of course for smooth projective space we have Ω̄p
P4 = Ωp

P4 . In our disussion we

require the notion of the logarithmic differential forms. For a divisor X that is disjoint from

the singular locus of Y we define Ω̄p
Y (logX) to be the sheaf of p-forms ω such that ω and

dω have at most simple poles along X. As X misses the singular points of Y we see:

Ω̄p
Y (logX)|Reg(Y ) = Ωp

Reg(Y )(logX ∩ Reg(Y ))(3)

Ω̄p
Y (logX)|(Y \X) = Ω̄p

Y \X(4)

For smooth X we have exact sequences as in ([13, Proposition 2.3]):

0 → Ω̄p
Y → Ω̄p

Y (logX) → Ωp−1
X → 0(5)

0 → Ω̄p
Y (logX)(−X) → Ω̄p

Y → Ωp
X → 0.(6)

Now we recall Proposition 1. of [5] with slightly adapted point (6).

Proposition 5.1. [5, Proposition 1] Under notation as above we have:

(1) π∗OP̃(−mE) ∼= JmΣ, for m ≥ 0

(2) Riπ∗OP̃(−mE) = 0, for i ̸= 0,m ≥ 0

(3) H i(OX̃) = 0, for i = 1, 2

(4) H i(Ω3
P) = 0, for i ≤ 2.

(5) H i(Ω4
P̃(X̃) ∼= H i(Ω4

P(X))

(6) H i(Ω4
P̃(2X̃)) ∼= H i(Ω4

P((2X)⊗ JQ+3P )

Proof. We only need to show (6).We consider

KP̃ + 2X̃ ∼ π∗(KP + 2X)−D − 3E
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and thus from the projection formula we obtain

Ω4
P̃(2X̃) = Ω4

P(2X)⊗ JQ+3P

□

The following is [5, Lemma 2]. We quote it with proof for our result to be self-

contained.

Lemma 5.2.

h1.2(X̃) = h0(Ω3
X̃
(X̃))− h0(Ω̄3

P̄(X̃)) + dimKer(H1(Ω̄3
P̄(X̃)) → H1(Ω3

X̃
(X̃)))

Proof. From Serre duality it follows that H0(Ω2
X̃
) = H2(OX̃) = 0. As X̃ is smooth and

misses the singular locus of the weighted projective space, the exact sequence from above

reads

0 → Ω̄3
P̄ → Ω̄3

P̄(log X̃) → Ω2
X̃

→ 0

and from that we see

H0(Ω2
X̃
) ∼= H0(Ω̄3

P(log X̃)) = 0

H1(Ω2
X̃
) ∼= H1(Ω̄3

P(log X̃))

Analogously, tensoring the second exact sequence with OP̃(X̃) we get the following:

0 → Ω̄3
P(log X̃) → Ω̄3

P̃
(X̃) → Ω3

X̃
(X̃) → 0.

Now, the lemma follows from the derived log exact sequence

0 → H0(Ω̄P̃ (X̃)) → H0(Ω3
X̃
(X̃)) → H1(Ω̄3

P(log X̃)) → H1(Ω̄3
P̃
(X̃)) → H1(Ω3

X̃
(X̃))

□

Lemma 5.3. The following sequence is exact

H0Ω̄3
P(X) −→ H0(Ω̄3

P(X)⊗ OP ) −→ H1(Ω̄3
P̃(X̃)) −→ 0
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Proof. By [5, Corollary 3] we have

π∗Ω̄3
P
∼= Ω̄3

P̃(log(E +D))(−3(E +D))

and

OP̃(X̃) ∼= π∗(OP(X))⊗ OP̃(−2D − 3E).

By [13, Property 2.3(c)] we get the following exact sequence

0 −→ Ω̄3
P̃(log(E +D))(−(E +D)) −→ Ω̄3

P̃ −→ Ω̄3
(E+D)|(E+D) −→ 0

which translates into

0 −→ π∗Ω̄3
P(2(E +D)) −→ Ω̄3

P̃ −→ Ω̄3
(E+D)|(E+D) −→ 0

and tensoring with OP̃(X̃) we get

0 −→ π∗Ω̄3
P̃(X)⊗ OP̃(−E) −→ Ω̄3

P̃(X) −→ Ω̄3
E(3)⊗ Ω̄3

D(2) −→ 0

Applying the direct image we obtain π∗Ω̄
3
P̃(X̃) = Ω̄3

P(X)⊗ JP .Again by [5]

H iΩ̄3
P̃(X̃) = H i(Ω̄3

P(X)⊗ JP )

and

Riπ∗Ω̄P̃(X̃) = 0

for i > 0. Long exact sequence coming from

0 −→ Ω̄3
P(X)⊗ JP −→ Ω̄3

P(X) −→ Ω̄3
P(X)⊗ OP −→ 0

gives us

H0(Ω̄3
P(X)) −→ H0(Ω̄3

P(X)⊗ OP ) −→ H1(Ω̄3
P(X)⊗ JP ) −→ H1(Ω̄3

P(X)) = 0

which finishes the proof. □

Lemma 5.4. We have the following exact sequence

H0Ω̄4
P(2X) −→ H0(Ω̄4

P(2X)⊗ OQ ⊗ O3P ) −→ H1Ω̄3
P(X̃) −→ 0
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Proof. By the adjunction formula KX̃ = (KP̃ + X̃)|X̃ we get Ω̄3
X̃
(X̃) ∼= Ω̄4

P̃(2X̃)|X̃. This

means that we can translate the short exact sequence

0 −→ Ω̄4
P̃(X̃) −→ Ω̄4

P̃(2X̃) −→ Ω̄4
P̃(2X̃)⊗ OX̃ −→ 0

into

0 −→ Ω̄4
P̃(X̃) −→ Ω̄4

P̃(2X̃) −→ Ω̄3
X̃
(X̃) −→ 0.

From that we obtain the long exact sequence with

H1Ω̄4
P̃(X̃) −→ H1(Ω̄4

P̃(2X̃)) −→ H1Ω̄3
X̃
(X̃) −→ H2Ω̄4

P̃(X̃) = 0

and so

H1Ω̄3
X̃
(X̃) ∼= H1(Ω̄4

P̃4(2X̃) ∼= H1Ω̄4
P((2X)⊗ JQ+3P ).

using (6) from the Proposition 5.1 for the last isomorphism. As we have the exact sequence

0 −→ Ω̄4
P((2X̃)⊗ JQ+3P ) −→ Ω̄4

P(2X) −→ Ω̄4
P((2X)⊗ OQ ⊗ O3P ) −→ 0

the derived one finishes the proof. □

We have S := ⊕∞
d=0S

d = C[X0, . . . , X4] - the ring of polynomials graded by

deg(Xi) = wi. For a homogeneous ideal I ⊂ S we write I(d) := I ∩ Sd, the degree d

graded summand. In what follows we need the notion of the equisingular ideal of X, that is

Ieq :=

µ3⋂
i=1

(m3
i + JacF ) ∩

µ2⋂
j=1

(mj + JacF ).

Theorem 5.5. With notation as above we have

h1,1(X̃) = dim(I(2d−|w|)
eq )− dimS2d−|w| + 12µ3 + µ2 + 1

h1,2(X̃) = dim(I(2d−|w|)
eq )− Σk

i=0 dimSd+wi−|w|.

Proof. Consider the following diagram with exact rows:
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i S

d+wi−|w|/Sd−|w| C4µ3

H0(Ω̄3
P(X)) H0(Ω̄3

P(X)⊗ OP ) H1(Ω̄3
P̃4(X̃)) 0

H0(Ω̄4
P(2X)) H0(Ω̄4

P(2X)⊗ OQ ⊗ O3P ) H1(Ω3
X̃
(X̃)) 0

S2d−|w| C15µ3+µ2

∼= ∼=

ξ

θ

β

α

ϕ

η γ

∼= ∼=

To make this proof self-contained we recall the description of the maps in this

diagram from [4]. We denote by Kj the contraction with the vector field ∂
∂Xj

and by Ω the

4-form Σ4
i=0(−1)iwiXjdX0 ∧ · · · ∧ ˆdXi ∧ · · · ∧ dX4. The vertical isomorphisms in the first

column are as follows:

k⊕
i=0

Sd+wi−|w| ∋ (A0, . . . , A4) 7→ Σ4
i=0

Ai

F
KiΩ ∈ H0(Ω̄3

P(X))

where we have the inclusion Sd−|w| ∋ A 7→ (w0X0A, . . . , w4X4A) ∈ ⊕k
i=0S

d+wi−|w|) and

S2d−|w| ∋ A 7→ A

F 2
Ω ∈ H0(Ω4

P(2X)).

With respect to these isomorphisms, we can think of θ as assigning the values at P1, . . . , Pµ3

to quintuples A0, . . . , A4 and η as assigning 3-jets at P1, . . . , Pµ3 and values at Q1, . . . , Qµ2

to degree 2d − |w| homogenous polynomials. Also, ξ is the exterior derivative ω 7→ dω and

thus:

d(Σ4
i=0

Ai

F
KiΩ) =

1

F 2
Σ4
i=0(F

∂Ai

∂Xi
−Ai

∂F

∂Xi
)Ω.

Finally, β(A1
0, . . . , A

1
4, . . . , A

µ3
0 , . . . , Aµ3

4 ) is given by 3-jets of Σ4
i=0A

k
i (Pk)

∂F
∂Xi

at P1 . . . , Pµ3 .

This last map is injective as F has ordinary triple points at Pi’s which means that partial

derivatives of F are linearly independent modulo m3
i where mi is the maximal ideal of point

Pi. Thus dim Im(β) = 4µ3.

We are to calculate dimKerΦ. Note that h1(Ω3
X̃
(X̃)) = h1(Ω3

P̃4(X̃))− dimKerΦ+

dimCokerΦ. On the other hand for any b ∈ H0(ΩP(X)⊗OQ) we see that (Φ◦α)(b) = 0 ⇐⇒
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(γ◦β)(b) = 0. As β is injective we can, abusing notation, write b ∈ H0(ΩP(2X)⊗OQ⊗O3P ).

But then γ(b) = 0 ⇐⇒ b ∈ Im(η). We have obtained the following exact sequence

0 → Imβ ∩ Imη → Imβ → H1(Ω3
X(X)) → Coker(γ ◦ β) → 0

From that h1(Ω3
X(X)) = dim Im(β) − dim(Im(β) ∩ Im(η)) + dimCoker(β ◦ γ). But

dimCokerΦ = dimCoker(β ◦γ) because it is the dimension of the component of H1(Ω3
X̃
(X̃))

that is exactly not in the image of Φ and since α is surjective and β injective this is the

same as the component not in the image of β ◦ γ. Putting the equalities together we obtain

dim(KerΦ) = h1(Ω3
P̃4(X̃))− dim(Imβ) + dim(Im(β) ∩ Im(η))

By [5] Lemma 2. we have the following formula for h1,2(X̃):

h1,2(X̃) = h0(Ω3
X̃
(X̃))− h0(Ω3

P̃(X̃)) + dimKer(H1Ω3
P̃(X̃) → H1Ω3

X̃
(X̃))

and putting it together with the above result we get

h1,2(X̃) = h0(Ω3
X̃
(X̃))− h0(Ω3

P̃(X̃)) + h1(Ω3
P̃4(X̃))− dim(Imβ) + dim(Im(β) ∩ Im(η))

In the calculations below we will use the following exact sequences:

0 → Ω3
P4(X̄)⊗ JQ → Ω3

P4(X̄) → Ω3
P4(X̄)⊗ OQ → 0

0 → Ω4
P̃4
(X) → Ω4

P̃4
(2X) → Ω4

P̃4
(2X)|X → 0

where Ω4
P̃4
(2X)|X ∼= Ω3

X(X) by adjunction. As h1(Ω3
P4(X̄)) = 0 from the first sequence we

obtain

h1(Ω3
P4(X̄)⊗ JQ)− h0(Ω3

P4(X̄)⊗ JQ) = h0(Ω3
P4(X̄)⊗ OQ)− h0(Ω3

P̃4
(X)).

From the second one we have

h0(Ω3
X(X)) = h0(Ω4

P̃4
(2X))− h0(Ω4

P̃4
(X)) = h0(Ω4

P4(2X̄)⊗ J3P+Q)− h0(Ω4
P̃4
(X)).
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Recall also hi(Ω3
P̃4(X)) = hi(Ω3

P4(X̄)⊗ JQ). By the above results we have

h0(Ω3
X̃
(X̃))− h0(Ω3

P̃4
(X̃)) + h1(Ω3

P̃4(X̃)) =

h0(Ω4
P(2X)⊗ J3P+Q)− h0(Ω4

P4(X))− h0(Ω3
P̄4(X̃)⊗ JP ) + h1(Ω3

P̄4(X̃)⊗ JP ) =

h0(Ω4
P4(2X)⊗ J3P+Q)− h0(Ω4

P4(X)) + h0(Ω3
P4(X)⊗ OQ)− h0(Ω3

P4(X))

From the discussion above we obtain that Im(β) ∩ Im(η) = (Ieq/(
⋂µ3

i=1m
3
i ∩⋂µ2

j=1mj))
(2d−|w|). Now

h0(Ω4
P4(2X)⊗ J3P+Q) = dim((

µ3⋂
i=1

m3
i ∩

µ2⋂
j=1

mj)
(2d−|w|))

h0(Ω4
P4(X)) =

(
d− |w|+ 4

4

)
h0(Ω3

P4(X)) = Σi

(
d+ wi − |w|+ 4

4

)
+

(
d− |w|+ 4

4

)
h0(Ω3

P4(X)⊗ OQ) = 4µ3

and so

h1,2(X̃) =

dim(Ieq)
(2d−|w|) −

(
d− |w|+ 4

4

)
+ 4µ3 − Σi

(
d+ wi − |w|+ 4

4

)
+

(
d− |w|+ 4

4

)
− 4µ3 =

dim(Ieq)
(2d−|w|) − Σ4

i=0 dimSd+wi−|w|

We keep following [4]. We remark that a general hypersurface Xsm of degree d =

degX misses the singular locus of P and is smooth as X missing Sing(P) implies that the

weights w0 . . . , w4 are pairwise coprime and wi divides d for all i. Thus by [10, Theorem

3.2.4 and Theorem 4.3.2]

e(Xsm) = 4− 2 dimS2d−|w| + 2Σ4
i=0 dimSd+wi−|w| − 2 dimSd−|w|.

The Milnor number of an ordinary triple point is 16 and the resolution replaces it with the

cubic surface with Euler number 9; similarily, small resolution of a double point with Milnor

number 1 replaces it with a P1 with Euler number 2. Thus:

e(X̃) = 4− 2 dimS2d−|w| + 2Σ4
i=0 dimSd+wi−|w| − 2 dimSd−|w| + 24µ3 + 2µ2.
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Now, using the fact that e(X̃) = 2(h1,1(X̃)− h1,2(X̃)− h0,3(X̃) + 1) (analogously

for Xsm) and the fact that H0,3(X̃) = Sd−|w| as the resolution of X is crepant we obtain

h1,1(X̃) =
e(Xsm)

2
+ 12µ3 + 2µ2 + h1,2(X̃) + h0,3(X̃)− 1 =

2− dimS2d−|w| +Σ4
i=0 dimSd+wi−|w| − dimSd−|w| + 12µ3 + µ2+

dim(Ieq)
(2d−|w|) − Σ4

i=0 dimSd+wi−|w| + Sd−|w| − 1 =

dim(I(2d−|w|)
eq )− dimS2d−|w| + 12µ3 + µ2 + 1

as desired. □

Recall that the defect of the hypersurface X is the difference between the actual and

the expected dimension of the ideal I(2d−|w|)
eq . As the codimension of the ideal (m3

i + JacF )

is 11 and the codimension of (mj + JacF ) is 1 we have

δ = dim I(2d−|w|)
eq − (dimS2d−|w| − 11µ3 − µ2)

and thus we can write our results in more approachable form:

Corollary 5.6. With notation as before we have

h1,2(X̃) = dimS2d−|w| − Σ4
i=0 dimSd+wi−|w| − 11µ3 − µ2 + δ

and

h1,1(X̃) = 1 + µ3 + δ.

Note that the only difference between these results and results from [5] is the

number of double points µ2 both appearing in the expression for h1,2(X̃) and "hidden" in

the defect δ.

We can now easily apply these results to the quintic threefold and to the sextic in

the projective weighted space. Taking also into account the remaining Hodge numbers we

obtain:

Corollary 5.7. For X̃, a resolution of singularities of a quintic threefold X ⊂ P4 with only

ordinary triple points and ordinary double points as singularities the following holds:
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(1) h0,0(X̃) = h3,3(X̃) = h3,0(X̃) = 1

(2) h1,0(X̃) = 0

(3) h1,1(X̃) = 1 + µ3 + δ

(4) h1,2(X̃) = 101− 11µ3 − µ2 + δ.

Corollary 5.8. For X̃, a resolution of singularities of a sextic threefold X ⊂ P(1 : 1 : 1 : 1 :

2) with only ordinary triple points and ordinary double points as singularities the following

holds:

(1) h0,0(X̃) = h3,3(X̃) = h3,0(X̃) = 1

(2) h1,0(X̃) = 0

(3) h1,1(X̃) = 1 + µ3 + δ

(4) h1,2(X̃) = 175− 11µ3 − µ2 + δ.
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5.2. Complete intersection threefolds. We move on to calculate Hodge numbers of the

complete intersection threefolds that we consider. Once again we will be basing our results

on work by Cynk [5]. We consider his results regarding nodal complete intersection threefolds

and provide a generalization concerning complete intersection threefolds which can have only

ordinary double and triple points as singularities. For simplicity we limit ourselves to the

complete intersection of two hypersurfaces in P5 although these results could be generalized

to higher dimensions. Let X be the complete intersection H1 ∩H2 ⊂ P5 of 2 hypersurfaces

in P5. We require the hypersurfaces to be smooth. Also write Y = H1. See that now X is

the hypersurface in the smooth projective fourfold Y .

Again we denote by Pi’s the triple points on X and by Qj ’s the double points.

We use µk to denote the number of points of multiplicity k. Then P = {P1, . . . , Pµ3} and

Q = {Q1, . . . , Qµ2} constitute singular locus of X which we denote Σ. Write π : Ỹ → Y

for the blowup of Y in all singular points of X and denote the exceptional divisors of π

with Ei = π−1(Pi), Dj = π−1(Qj), E = E1 + . . . Eµ3 , D = D1, . . . , Dµ2 . For sets A,B of

points on X and non-negative integers m,n let JmA+nB denote the ideal sheaf of germs of

regular functions on P vanishing at all points of A to order at least m and at all points of

B to order at least n. This time let I denote the module generated by rows of the Jacobian

matrix Jac(F1, F2). The following is the analogue of the Proposition 5.1 adapted to our case

and thus we present it without proof.

Proposition 5.9. We have

(1) π∗OỸ (−mE) ∼= JmΣ, for m ≥ 0,

(2) Riπ∗OỸ (−mE) = 0, for i ̸= 0, m ≥ 0,

(3) H i(OX̃) = 0, for i = 1, 2,

(4) H0(Ω4
Ỹ
(X̃) ∼= H0(Ω4

Y (X)),

(5) H i(Ω4
Ỹ
(X̃)) = 0, for i > 0,

(6) H i(Ω4
Ỹ
(2X̃) ∼= H i(Ω4

Y (2X)⊗ J3P+Q)
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We also see the analogue of the lemmas from the hypersuface case, we adapt them

here without proof.

Lemma 5.10.

h1.2(X̃) = h0(Ω3
X̃
(X̃))− h0(Ω̄3

P̄(X̃)) + dimKer(H1(Ω̄3
P̄(X̃)) → H1(Ω3

X̃
(X̃)))

Lemma 5.11. We have the following exact sequence

H0Ω4
Y (2X) −→ H0(Ω4

Y (2X)⊗ OQ ⊗ O3P ) −→ H1Ω3
Y (X̃) −→ 0

Lemma 5.12. The following sequence is exact:

0 −→ H1(Ω3
Y ) −→ H1(Ω3

Ỹ
(log X̃) −→ H1(Ω2

X̃
) −→ 0

Lemma 5.13. The following sequence is exact:

0 −→ H0(Ω3
Y (X)) −→ H0(Ω3

X̃
(X̃)) −→ H1(Ω3

Ỹ
(log X̃))

−→ H1(Ω3
Y (X)) −→ H1(Ω3

X̃
(X̃)).

By 5.12 we have:

h1(Ω2
X̃
) = h1(Ω3

Ỹ
(log X̃))− h1(Ω3

Y ).

By 5.13 we have:

h1(Ω3
Ỹ
(log X̃)) = h0(Ω3

X̃
(X̃))− h0(Ω3

Y (X)) + dim(Ker(H1(Ω3
Y (X) −→ H1(Ω3

X̃
(X̃)))).

By the short exact sequence

0 −→ Ω4
Ỹ
(X̃) −→ Ω4

Ỹ
(2X̃)) −→ Ω4

Ỹ
(2X̃)⊗ OX̃ −→ 0

and the adjunction formula

Ω3
X̃
(X̃) ∼= Ω4

Ỹ
(2X̃)⊗ OX̃

we obtain

h0(Ω4
Ỹ
(2X̃)) = h0(Ω4

Ỹ
(X̃)) + h0(Ω3

X̃
(X̃).
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We get:

h1(Ω2
X̃
) =

h0(Ω4
Ỹ
(2X̃))− h0(Ω4

Ỹ
(X̃))− h1(Ω3

Y )− h0(Ω3
Y (X)) + dim(Ker(H1(Ω3

Y (X) → H1(Ω3
X̃
(X̃))))

We want to show the following.

Theorem 5.14. With notation as above we have

h1,1(X̃) = dim(I ∩ J 2d−2r−3
3P+Q )− dim I2d−2r−3 + 12µ3 + µ2 + 1

h1,2(X̃) = h1,2(Xsmooth) + dim(I ∩ J 2d−2r−3
3P+Q )− dim I2d−2r−3.

Proof. As before we consider the diagram with exact rows:

Sd+d1−6 H1(Ω3
Y (X)) 0

H0(Ω4
Y (2X)) H0(Ω4

Y (2X)⊗ OQ ⊗ O3P ) H1(Ω3
X̃
(X̃)) 0

Sd+d2−6 C15µ3+µ2

β

α

ϕ

ξ γ

η θ ∼=

We discuss the vertical identification in the first column. To a polynomial A ∈

Sd+d2−6 we associate a form A
F1F 2

2
Ω where Ω = Σ5

i=0XidX0 ∧ · · · ∧ X̂i ∧ · · · ∧ dX5. Again let

Ki denote the contraction with the vector field Xi. We can treat η as assigning A its value

at Q1, . . . , Qµ2 and its 3-jets at P1 . . . Pµ3 as before. Let B ∈ Sd+d1−6. Then, similarily to

[5] β(B) is given by evaluating at Q and assigning 3-jets at P to Σ5
i=0B

∂F2
∂Xi

. We obtain

Im(β) + Im(θ) ∼= (I ⊗ OQ+3P )
2d−2r−3 ∼= I2d−2r−r/(I ∩ JQ+3P )

2d−2r−3.

From 5.9 we have h0(Ω4
Ỹ
(2̃X)) = h0(Ω4

Y (2X) ⊗ J3P+Q) = dimKer(ξ) =

h0(Ω4
Y (2X))−dim Imξ. Also dimKerΦ = h1(Ω3

Y (X))−dim ImΦ. Since α and β are epimor-
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phisms we have Imξ = Imθ and Imϕ = Im(γ ◦ β). Now see

dim(Imθ + Imβ) = dim Imθ + dim Imβ − dim(Imθ ∩ Imβ) =

dim Imθ + dim Imβ − dim(Imβ ∩ Kerγ) =

dim Imθ + dim Imβ − dim(Ker(γ|Imθ)) =

dim Imθ + dim Im(γ|Imβ) =

dim Imθ + dim Im(γ ◦ β) = dim Imθ + dim Imϕ = dim Imξ + dim Imϕ

Putting these into

h1(Ω2
X̃
) =

h0(Ω4
Ỹ
(2X̃))− h0(Ω4

Ỹ
(X̃))− h1(Ω3

Y )− h0(Ω3
Y (X)) + dim(Ker(H1(Ω3

Y (X) → H1(Ω3
X̃
(X̃))))

we get

h1(Ω2
X̃
) = h0(Ω4

Y (2X)−h0(Ω4
Y (X))−h1(Ω3

Y ))−h0(Ω3
Y (X))+h1(Ω3

Y (X))−dim(Imβ+Imθ).

As for the smooth complete intersection Xsmooth of the same multi-degrees the computations

yield h1(Ω2
X) = h0(Ω4

Y (2X)−h0(Ω4
Y (X))−h1(Ω3

Y ))−h0(Ω3
Y (X))+h1(Ω3

Y (X)) we conclude

h1,2(X̃) = h1,2(Xsmooth)− µ2 − 11µ3 + δ

with the defect

δ = µ2 + 11µ3 − (dim I2d−2r−r − dim(I ∩ JQ+3P )
2d−2r−3).

By similar reasoning as in the case of hypersurfaces in weighted projective spaces we obtain

the formula for h1,1(X̃) concluding the proof. □

As before we have immediate application of the formula to the threefolds we are

particularly interested in.

Corollary 5.15. For X̃2,4, a resolution of singularities of a complete intersection threefold

X2,4 ⊂ P5 with only ordinary triple points and ordinary double points as singularities the

following holds:
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(1) h0,0(X̃) = h3,3(X̃) = h3,0(X̃) = 1

(2) h1,0(X̃) = 0

(3) h1,1(X̃) = 1 + µ3 + δ

(4) h1,2(X̃) = 89− 11µ3 − µ2 + δ.

Corollary 5.16. For X̃3,3, a resolution of singularities of a complete intersection threefold

X3,3 ⊂ P5 with only ordinary triple points and ordinary double points as singularities the

following holds:

(1) h0,0(X̃) = h3,3(X̃) = h3,0(X̃) = 1

(2) h1,0(X̃) = 0

(3) h1,1(X̃) = 1 + µ3 + δ

(4) h1,2(X̃) = 73− 11µ3 − µ2 + δ.
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5.3. Hodge numbers of Calabi-Yau threefolds after a geometric transition. We

return to the notation from before meaning X is again a smooth Calabi-Yau threefold.

Proposition 5.17. Let X be a smooth Calabi-Yau threefold containing a smooth surface

E ruled over a smooth curve C of genus g(C) > 1, let π : X → Y be a primitive type III

contraction and let Ỹ be the smooth Calabi-Yau obtained by deforming Y . Then

(1) h1,1(Ỹ ) = h1,1(X)− 1

(2) h1,2(Ỹ ) = h1,2(X) + 2g(C)− 3.

Proof. Let π : X → ∆ be the Kuranishi family for X = X0 where ∆ is a polydisc in

H1(TX) which we identify with the space of deformations of X. By 2.20 the primitive type

III contraction π0 : X → Y deforms to a primitive type I contraction πt : Xt → Yt of

2g(C)− 2 curves of Xt. As E is a smooth surface ruled over a smooth curve C we see from

the discussion in the proof of [42, Proposition 4.2] that the fibers are being contracted to A1

singularities and thus indeed this process yields a conifold transition T (Xt, Yt, Ỹ ). Note that

we have used the assumption that E is a ruled surface over a smooth curve with g(C) > 1.

In general a type III contraction deforming to type I contractions may yield some worse

singularities, for example if E has double fibers.

By the discussion in [42, p. 562], we can identify groups H2(Xt,Z) ∼= H2(X,Z)

in a family π : X → ∆ for some polydisc ∆ ∈ H1(TX). We perform the contractions

πt : Xt → Yt over ∆ and then the smoothing of the image of the type I contraction. We

know from [17, Proposition 3.1] and [29, Remark 12.2.1.4.2] that the Picard number of Yt is

constant for t ∈ ∆ (shrinking ∆ if necessary) and thus

h1,1(Ỹ ) = h1,1(Yt) = h1,1(Xt)− 1 = h1,1(X)− 1.

The final equality follows easily from [39, Theorem 3.2]. It gives that for a conifold transition

T (Xt, Y, Ỹ ) we have

h1,1(Ỹ ) = h1,1(Xt)− k

h1,2(Ỹ ) = h1,2(Xt) + c
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where k + c = |Sing(Y )|. Since |Sing(Y )| = 2g(C) − 2 we obtain c = 2g(C) − 3 as k = 1,

thus concluding the proof. □

Even though 2.20 holds for g = 1 as well our formulas don’t apply then. In this

case type III contraction no longer deforms to type I contractions and we cannot discuss the

change in Hodge numbers as above.
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6. Examples of Calabi-Yau threefolds from type III contractions

6.1. Calabi-Yau threefolds from quintic threefolds. Before we move further with the

discussion we want to recall one more interesting property of quintic threefolds we work

with.

Fact 6.1. We can look at the geometry of quintic X̄ as that of a double octic that is a double

covering of P3 branched over an octic surface (e.g. as in [8]). Recall that X̄ is described

as a zero locus of F (x, y, z, t, u) = u2F3(x, y, z, t) + uF4(x, y, z, t) + F5(x, y, z, t). We can

project X onto P3 from the point [0 : 0 : 0 : 0 : 1]. Then the branch locus is defined as

the vanishing set of the discriminant, namely a surface of degree 8, necessarily of the form

S = V (F 2
4 − 4F3F5) ⊂ P3.

There are many interesting properties linking the geometry of X with that of S.

We show the basic one.

Proposition 6.2. The singular points of S contain the intersection of V (F3), V (F4), V (F5).

In particular, C ⊂ Sing(S).

Proof. Let G := F 2
4 − 4F3F5. A straightforward calculation of derivatives gives us ∂G

∂α =

2F4
∂F4
∂α − 4(F3

∂F5
∂α + F5

∂F3
∂α ) for α ∈ {x, y, z, t} and so whenever F3 = F4 = F5 = 0 we have

∂G
∂α = 0. This shows C ⊂ Sing(S). Also the excess points are all contained in the intersection

of X3, X4, X5. □

We will not discuss the properties of the double cover any further as this is not

the aim of our paper. It is worth noting, though, that some restrictions on the existence of

singular octic surfaces translate into restrictions of existence of quintic threefolds with triple

point(s). For example one can show that for m > 1 quintic threefold with m ordinary triple

points is a double cover of P3 branched over an octic surface with m−1 quadruple points. As

there are restrictions to the number of isolated quadruple points on an octic [3, Proposition

5.1], this provides interesting results. Note that a generic quintic threefold containing a triple
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point contains 60 lines, as the intersection of V (F3), V (F4) and V (F5) consists of 60 points.

Yet, for m ≥ 10 a quintic threefold must necessarily contain cones whose vertices are triple

points in question as singularites on octic can no longer be isolated forcing V (F3), V (F4)

and V (F5) to intersect in a (not necessarily irreducible) curve. This may prove fruitful in

further research.

We want to describe the Kähler cone of the constructed threefolds. The formula for

the defect is δ = dim I
(5)
eq − 115−µ2 and we use it to perform the calculations in Macaulay2

[16]. As expected we obtain δ = 1 for almost all quintics Xi and thus h1,1(Xi) = 3 which is

also the rank of their Picard groups as discussed previously. The only exception is X3,5 for

which δ = 0 and h1,1 = 2. The following Fact is a straightforward application of Theorem

4.6.

Fact 6.3. For all threefolds obtained by resolution of singularities on quintic threefolds that

we consider the closure K̄ of the Kähler cone K is contained in the convex hull of three rays.

Furthermore, two of the rays are generated by the divisors H and H−D and don’t lie on the

cubic cone W . The third ray is generated by a divisor L such that L3 ̸= 0 for all threefolds

but for X2,3, X8B, X11 for which L3 = 0.

In Table 3 we present values β for which Q|D stops being ample, the divisor L =

(2− β)H + βD+E and value L3 for each of the quintics X. In column L|D we provide the

coordinates in the Picard group of D of L.

We are now ready to prove the following statement:

Theorem 6.4. Threefolds X5(i) constructed in this paper admit

(1) a type I, a type II, and a type III primitive contractions for i ∈

{3, {2, 3}, {3, 3}, {3, 4}}, that is whenever the class of a curve C is a multiple of

a class of a hyperplane section of cubic surface,

(2) a type I and two type III primitive contractions for i ∈ {2, 5A, 5B, 8B, 11},

(3) two type I primitive contractions and a type III primitive contraction in other cases.
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Proof. This theorem is a consequence of the previous one and of the [42, Fact 1]. Codimension

one face spanned by H − D and H corresponds to a type I contraction as it contracts r,

face spanned by H −D and L corresponds to a type III contraction as it contracts all fibers

l of E and thus contracts E to a curve. The face spanned by L and H yields different

contraction depending on the threefold in question. In cases i ∈ {3, {2, 3}, {3, 3}, {3, 4}} we

have L.D = 0 which means the whole cubic surface is contracted to a point giving a type II

contraction. In cases i ∈ {2, 5A, 5B, 8B, 11} we have L|D of class l−e1 or 2l−e1−e2−e3−e4.

The corresponding complete linear systems are only two-dimensional and thus they provide

morphisms of D to a projective line P1. These are type III contractions of a cubic surface to

a curve of genus 0. We do not discuss them in detail as this situation is more complicated

than when g ≥ 1. In the remaining cases we obtain the contraction of some families of curves

on D into points, that is type I contractions. □

Note the fact that L3 = 0 for some of the quintics does not affect the contraction

corresponding to the faces of the cone limited by L as for all divisors Q on these faces Q3 ̸= 0.

In addition, take notice that the contraction of X given by the system |H| is exactly the

blow-up of a triple point and the curves coming from the small resolution, while system

|H − D|, that is the system of hyperplane sections passing through D which translates to

hyperplane sections passing through the point O on X̄, is the system giving a double cover of

P3 discussed earlier. In the following section we take a closer look at the type III contraction.

6.1.1. Contraction and smoothing. We restrict our focus to the type III contraction admitted

by the quintics Xi. We keep the notation as above. The goal of this section is to prove three

theorems regarding the existence of type III contractions.

Theorem 6.5. For discussed threefolds obtained from quintics X5(i), where i /∈

{1, 2, {TC}, {4A}, {4B}, {7A}}, the morphism ϕ(|m(2H+E)|) : X → Y for some m >> 0

is a primitive contraction of type III which contracts the ruled surface E to a curve C̃.

By ϕ(|m(2H+E)|) we mean a morphism given by the nef linear system |m(2H +E)|

on Xi. We’ve excluded those quintics for which 2H+E has zero, or negative intersection with
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some curve on D leaving only those for which (2H + E)|D (and thus its positive multiple)

is ample.

Proof. First of all we remark that 2H+E is indeed contained in the face of the Kähler cone

spanned by H −D and L as it is of the form (2γ − β)H + βD + γE for β = 0 and γ = 1

and so (2H +E).l = 0 for any quintic Xi. Since |H| is the pullback of a hyperplane section

of X̄ it separates points on X outside of D and |2H +E| separates points outside of D and

E. Moreover, restriction of T ∈ |2H + E| to D belongs to the linear system |C̃i| of curves

linearly equivalent to some curve C̃i on D (different for each Xi). For all quintics we discuss

here, the system |C̃i| is (very) ample yet we are not sure if |2H+E| maps surjectively onto it

and thus whether or not its restriction to D separates points. Yet, following the [42, Fact 1],

we know codimension one faces of the Kähler cone correspond to the primitive contractions,

and thus some multiple of |2H + E| gives the desired morphism finishing the proof. □

Note mT ∈ |m(2H + E)| corresponds to the hyperplane section of Y and thus we

have that mT.E is actually the degree of the curve C̃. By similar argument we obtain the

degree of Y namely (mT )3 = m3(2H + E)3 = m3(36 + 6deg(C) + 4g(C)). We have strong

reasons to believe that m = 1 should suffice to give the desired morphism, although we

haven’t been able to show it yet.

We need to deal with the remaining threefolds and their respective type III con-

tractions.

Theorem 6.6. For threefolds obtained from quintics X5(i) where i ∈

{2, {TC}, {4A}, {4B}, {7A}} the morphism ϕ(m|3H−D+E|) : X → Y , for some m >> 0 is a

primitive contraction of type III which contracts the ruled surface E to a curve C̃.

Proof. We can follow the proof of the previous theorem. As in the preceeding case we note

that T := 3H−D+E lies on the face spanned by H−D and L = 2H+E. The intersection

of T with any curve not contained in D or E is positive as 3H intersects any such curve.

The divisor is chosen so that it has zero intersection with fiber l of E and in all cases of
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this theorem (−D + E)|D is an ample curve on D, and thus intersection with any curve

contained in D is positive. By [42, Fact 1] we obtain the desired morphism.

□

Theorem 6.7. For a threefold obtained from quintic X5(1) the morphism ϕ(m|4H−2D+E|) :

X → Y for some m >> 0 is a primitive contraction of type III which contracts the ruled

surface E to a curve C̃.

Proof. The proof follows the same argument as the two before. □

Similarly to the case where L = m(2H +E) we obtain the degrees of Y ’s and C̃’s.

Table 4 summarizes the obtained results.

This brings us to the final result of this section.

Corollary 6.8. The threefolds Xi for i ∈ {3, 4A, 4B, 5A, 5B, 6, {2, 3}, 7A, 7B, 7C, 8A, 8B,

9A, 9B, {3, 3}, 10A, 10B, 11, {3, 4}} admit a primitive, type III contraction to a threefold Yi

which is smoothable, thus yielding a smooth Calabi-Yau threefold Ỹi.

Proof. Immediate from the theorem above and 2.19. □

Remark 6.9. To obtain the Hodge numbers of X for specific cases we need to know the

number µ2 of ordinary double points on X̄ or equivalently on X̃. This is actually equal to

c2(IẼ/IẼ2(5)) where IẼ is the defining ideal of the smooth ruled surface Ẽ and c2 denotes

the second Chern class of a vector bundle. Note that after blowing up the triple point O

of X̄ we obtain a singular threefold containing a smooth ruled surface in P̃4 - a projective

space with a blown-up point. Then the twisted normal bundle N
Ẽ/P̃4(5) is trivial exactly

when a general degree 5 threefold containing Ẽ is singular. This translates to the vanishing

of a general section of a conormal bundle N∨
Ẽ/P̃4

(5) ∼= IẼ/IẼ
2(5), and the number of zeroes

of such section is c2(IẼ/I
2
Ẽ
(5)) as the bundle is of rank two. A similar argument in case of

complete intersection threefolds can be found in [24, Remark 2.1].
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Remark 6.10. It is worth noting that the curve C3,5 that is the complete intersection of

a cubic and a quintic surface in P3 also gives rise to a threefold with Picard rank two. As

mentioned in the proof of Theorem 4.1 for the threefold obtained by blowing up a triple

point of a quintic threefold containing a cone over C3,5 we have E = 3H − 5D. In this case

we have no excess lines and no double points of X lying on the ruled surface E. We can

still apply the formulas for h1,1 and h1,2 to obtain their values for X5(3,5). For a smooth

threefold X5(3,5) we have δ = 0, h1,1 = 2 and h1,2 = 90. We can also perform the contraction

of E = 3H − 5D. The linear system |m(2H + E)| = |m(5H − 5D)| for some m > 0 gives

a birational morphism of X5(3,5) contracting E to a curve C of genus 31. This is the curve

of the highest genus that we have managed to obtain as an image of an exceptional divisor

through a type III contraction. The image threefold Y5(3,5) is smoothable by the previous

results and so we obtain a smooth Calabi-Yau threefold Ỹ5(3,5) of Picard rank 1.

6.2. Calabi-Yau threefolds from complete intersection threefolds.

6.2.1. Complete intersection X2,4. We present the results for complete intersection three-

folds X2,4 and X3,3 without proofs as they are completely analogous to the ones for quintic

threefolds.

Theorem 6.11. Threefolds X2,4(i) constructed in this paper admit

(1) a type I, a type II, and a type III primitive contractions for i = 6, that is whenever

the class of a curve C is a multiple of a class of a hyperplane section of cubic surface,

(2) a type I and two type III primitive contractions for i = 5,

(3) two type I primitive contractions and a type III primitive contraction in case i = 4.

Theorem 6.12. For discussed X = X2,4(5) or X = X2,4(6) the morphism ϕ(|m(2H+E)|) :

X → Y for some m >> 0 is a primitive contraction of type III which contracts the ruled

surface E to a curve C̃. For X = X2,4(4) the morphism ϕ(|m(3H−D+E)|) : X → Y for some

m >> 0 serves the same role.
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Corollary 6.13. The threefolds X2,4(i) for i ∈ {4, 5, 6} admit a primitive, type III con-

traction to a threefold Yi which is smoothable, thus yielding a smooth Calabi-Yau threefold

Ỹ2,4(i).

6.2.2. Complete intersection X3,3.

Theorem 6.14. Threefolds X3,3(i) constructed in this paper admit

(1) a type I, a type II, and a type III primitive contractions for i ∈ 3, 6, that is whenever

the class of a curve C is a multiple of a class of a hyperplane section of cubic surface,

(2) a type I and two type III primitive contractions for i = 5,

(3) two type I primitive contractions and a type III primitive contraction in case i = 4.

Corollary 6.15. The threefolds X3,3(i) for i ∈ {3, 4, 5, 6} admit a primitive, type III con-

traction to a threefold Yi which is smoothable, thus yielding a smooth Calabi-Yau threefold

Ỹ3,3(i).

Theorem 6.16. For discussed X = X3,3(i) with i ∈ {3, 5, 6} the morphism ϕ(|m(2H+E)|) :

X → Y for some m >> 0 is a primitive contraction of type III which contracts the ruled

surface E to a curve C̃. For X = X3,3(4) the morphism ϕ(|m(3H−D+E)|) : X → Y for some

m >> 0 serves the same role.

Tables 9 and 10 summarize the results obtained for complete intersection threefolds.

Remark 6.17. As in the case of a complete intersection of a cubic and a quintic we can

analyse the threefold X3,3 containing a cone over a degree 9 curve which is the complete

intersection of two cubics. Then we have E = HX . In this case we have no excess lines and

no double points of X̄ lying on the ruled surface E. We can still apply the formulas for h1,1

and h1,2 to obtain their values for X3,3(3,3). For a smooth threefold X3,3(3,3) we have δ = 0,

h1,1 = 2 and h1,2 = 62.

6.3. Calabi-Yau threefolds from sextic threefolds. Recall that in the case of a sextic

in a weighted projective space the curves serving as a basis of a ruled surface need to be
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contained in P2 and thus be plane curves. As we also want them to contained in cubic surface

this leaves us with only 3 cases of non-singular curves of degrees 1, 2 and 3. Out of these

three only the last one has g ≥ 1 and so we arrive at the following results.

Theorem 6.18. Threefolds X6(i) constructed in this paper admit

(1) a type I, a type II, and a type III primitive contractions for X6(3)

(2) a type I and two type III primitive contraction for X6(2)

(3) two type I primitive contractions and a type III primitive contraction for X6(1).

Corollary 6.19. The threefold X6(3) admits a primitive, type III contraction to a threefold

Y6(3) which is smoothable, thus yielding a smooth Calabi-Yau threefold Ỹ6(3).

The Table 13 sumarizes the results obtained for sextic threefolds. Note that even

though Ỹ6(3) is smooth we do not have the formula to calculate its Hodge numbers as

g(C) = 1. In the Table 9.2 we present the Hodge numbers of threefolds X6 obtained by the

resolution of singularities of sextic threefolds with triple point and a cone.
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7. Appendix A: Possible number of triple points on Calabi-Yau threefolds

In this section we consider the bounds pertaining the number of ordinary triple

points on Calabi-Yau threefolds X. We always assume that the threefold in question is to

have only ordinary triple points as singularities. Let µ3(X) denote the maximal number of

ordinary triple points that X can have under this condition. We drop X if the context is

clear.

7.1. Complete intersection X2,4 ⊂ P5. We consider a threefold being an intersection of

a quadric and a quartic fourfold in P5.

Theorem 7.1. A complete intersection threefold X2,4 ⊂ P5 with only ordinary triple points

as singularities can contain at most 10 of them.

Proof. We can assume that the equations of X2 and X4 are as follows F2 = wG1 + G2,

F4 = wG3 + G4 where Gi are homogeneous polynomials of degree i independent of w and

where O = [0 : 0 : 0 : 0 : 0 : 1] is one of the triple points of X2,4. We can now perform a

projection from the point O onto a P4 and obtain a quintic threefold Q. Let E denote the

exceptional divisor of a blowup of a point O. The projection is given by a linear system of

strict transforms of hyperplanes passing through the point O that is |H−E| and (H−E)3 = 5

indeed providing us with a threefold of degree 5. We want to show that Q is normal. Let

us assume to the contrary that Q is not normal. Then by [38, p.254] there would exist a

normalization Q̄ such that the ramification locus D would be two-dimensional on Q. A point

P is in D if the line L over it cuts X2,4 either in two points outside of O or if it is tangent

to X2,4 at some point. This means that there is a surface S ⊂ X2,4 that is either projected

two-to-one into Q or that lines connecting O and S are tangent to X2,4. Thus we see that

lines cutting S twice or tangent to it need to be contained both in X2 and X4. Indeed,

counting with multiplicities in case of the tangency, these lines cut the fourfolds in 3 points

(in case of X2) or a triple point and 2 additional points (in case of X4). Thus they are

contained in X2,4 and so it means that the projection from O contracts a threedimensional

cone ruled over S which is a contradiciton.
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Every triple point Oi different than O on X translates into a triple point Pi on

Q thus if µ3(X) = n then µ3(Q) = n − 1. Also note that we can consider G1G4 + G2G3

to be the equation of Q and thus there are 24 double points on Q, namely those for which

G1 = G2 = G3 = G4 = 0. By an argument similar to [30, Lemma 2.6] we can consider

Varchenko’s spectral bound for Q. For α = 2/5 the spectrum of the fivefold point has length

155 in the interval (2/5, 7/5) whilst the spectrum of the triple point has length 14 and the

spectrum of the double point has length 1 in this interval. Thus from 155 − 24 = 131 and

10 · 14 = 140 a quintic threefold containing 24 double points can have at most 9 ordinary

triple points as the remaining singularities. As then n−1 = 9 we have that X2,4 can contain

at most n = 10 ordinary triple points. □

Lemma 7.2. There exits a threefold X2,4 containing 7 ordinary triple points as only singu-

larities.

Proof. We can easily produce a fourfold X4 admitting 6 ordinary triple points in a general

linear position. Indeed, the space of quartic fourfolds is of dimension 125 and a triple point

imposes 20 linear conditions. Let X4 be a quadric fourfold having triple points in [1 : 1 : 1 :

1 : 1 : 1] and [1 : 0 : 0 : 0 : 0 : 0], . . . , [0 : 0 : 0 : 0 : 1 : 0]. Let F̃4(x, y, z, t, u, w) be the equation

defining X4. We can write F̃4 = w3F1+w2F2+wF3+F4 where Fi are homogeneous degree

i polnomials independent of w. Now lets take X2 = V (F̃2) with F̃2 = wF1+F2+F1H1 such

that X2 passes through all the triple points of X4 with H1 homogenous linear independent

of w. For Fi general enough the complete intersection X2,4 will have an ordinary triple point

at [0 : 0 : 0 : 0 : 0 : 1] and inherit all the ordinary triple points of X4 producing X2,4 with 7

OTPs. We are unaware of X2,4 having more than 7 OTP’s as the only singularities. □

7.2. Complete intersection X3,3 ⊂ P5. We briefly discuss the complete intersection three-

fold X3,3. This has proven to be more complicated because of the different ways we can obtain

triple points on X3,3. We descibe here those two ways and also analyse what is the image of

the projection from the triple point O in both cases. We do not provide the upper bound

yet we construct interesting examples of X3,3 admitting 3, 6 and 9 ordinary triple points.
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We consider a degree 9 threefold being an intersection of two degree 3 hypersurfaces

in P5. As usual we assume that X3,3 has only ordinary triple points as the only singularities.

Let X3,3 be V (F3, G3) where F3 and G3 are equations of degree 3 fourfolds in P5. Any other

cubic fourfold containing X3,3 is an element of a pencil aF3 + bG3 for a, b ∈ C.

It is important to distinguish two cases. A triple point P on X3,3 may be coming

from a triple point on some cubic fourfold containing X3,3 or there may be not exist such a

fourfold. This is the case for example when F3 = x2A1+xA2+A3 and G3 = x2A1+x(A2+

B1A1) +B3 with Ai, Bi being homogeneous of degree i independent of x. The tangent cone

at O = [1 : 0 : 0 : 0 : 0 : 0] of V (F3, G3) is generated by A1 and A3 − B3 so for general

A1, A3, B3 this is an ordinary triple point yet there is no cubic fourfold with triple point at

O.

We begin with the case when the triple point O of X3,3 is not inherited from

a cubic fourfold. We want to discuss the projection of X3,3 on P4 from this triple point

P = [1 : 0 : 0 : 0 : 0 : 0].

Lemma 7.3. Assume that the triple point O of X3,3 is not inherited from a cubic fourfold.

Let X̃3,3 be the threefold obtained as a resolution of this point. Then X̃3,3 can be projected

onto a sexic threefold singular along a degree three surface.

Proof. We use the equations F = x2F1 + xF2 + F3 and G = x2F1 + x(αF2 + H1F1) + G3

for X3 and Y3 such that X3,3 = X3 ∩ Y3. We blow up O and obain X3,3. Projection from

the preimage of O is given by a complete linear system of pullbacks of hyperplanes passing

through O. Let E denote the exceptional divisor over O. Then this system is |H̃ − E| and

(H̃ − E)3 = 6 meaning that the image threefold of the projection is a sextic X6 in P4. We

can calculate the equation of this sextic to be F6 = (F3−G3)
2+α(F3−G3)F2H1+F1H

2
1F3.

This can be seen directly by solving F = G = 0 or as the resultant of F and G treated

as quadratic polynomials with respect to x. This threefold is singular along a degree three

surface S3 being the vanishing locus of (F3 −G3) = H1 = 0. This surface is the image of a

the locus of X3,3 that is being projected two-to-one to F6.
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Note that S3 is not the only singular locus of X6. Let us consider the images of

other triple points in X3,3. Let P1 be a triple point and let L be the line spanned by P and

P1. In case there is no other triple point on L we have that the image Q1 of P1 is again a

triple point. It may happen that the line L is contained in X3,3 and that there is another

triple point on L. Then the projection contracts this line to a fourfold point on X6. □

We now discuss with the case when the triple point O on X3,3 are inherited from

triple points on some cubic fourfolds.

Lemma 7.4. Assume that in a pencil of cubic fourfolds containing a complete intersection

threefold X3,3 ⊂ P5 with only triple points as singularities there is a fourfold with triple point.

Then a threefold X̃3,3 obtained by blowing up one of the triple points of X3,3 is a double cover

of a cubic threefold Y3 ramified over a degree 12 surface.

Proof. Without loss of generality we may assume that X3,3 is the complete intersection of a

fourfold X3 = V (x2G1+xG2+G3) and a cone Ȳ3 = V (F3) where Gi and Fi are homogeneous

polynomials of degrees i independent of the variable x. Note that in this case P is exactly

the vertex of the cone Ȳ3 through which X3 passes smoothly. A general line in P5 cuts X3

in three points. As X3 passes through P it means that it cuts a general line of the ruling of

the cone Ȳ3 in 2 other points. As we blow up P and obtain X̃3,3 we can treat it as a double

cover of the base of the cone that is Y3 ⊂ P4. We are still to check the ramification locus.

This is exactly the vanishing locus of the discriminant D := V (G2
2−4G1G3) calculated with

respect to x from the equation defining X3. Intersection of D and Y3 in P4 is a degree 12

surface S12 which concludes the proof. □

In particular if we have different types of triple points on X3,3 (inherited or not)

we can choose one of the projections and obtain a double cover of a cubic threefold or a

birational map onto a sextic threefold.

Lemma 7.5. There exists a complete interection threefold X3,3 with 3, 6 and 9 ordinary

triple points as only singularities.
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Proof. We obtain threefolds X3,3 with only ordinary triple points as singularities by inter-

secting fourfold cubics containing a triple line. Assume X and Y are fourfold cubics in P4

such that X3,3 = V (X) ∩ V (Y ). If X admits a triple line and Y is smooth we obtain an

X3,3 with three colinear triple points. If X and Y both have triple lines without common

point then X3,3 admits 6 OTP’s. Finally if we take X = V (F ) = V (x3 + y3 + z3 + t3) and

Y = V (G) = V (w3 + u3 − z3 − t3) it is easy to verify that Z = V (F +G) is a cubic fourfold

containing X3,3 and each of X,Y, Z admits a different triple line yielding 9 OTP’s on X3,3

and finishing the proof. □

We are not aware of any threefold X3,3 with more than 9 ordinary triple points.

7.3. Sextic in P[1 : 1 : 1 : 1 : 2].

Theorem 7.6. A sextic hypersurface is P[1 : 1 : 1 : 1 : 2] with only ordinary triple points as

singularities can have at most 10 of them and this limit is attainable.

We work in a weighted projective space P[1 : 1 : 1 : 1 : 2] with variables x, y, z, t

of weights 1 and u being a variable of weight 2. We can thus write the equation of a sextic

hypersurface as F (x, y, z, t, u) = u3 + u2G2(x, y, z, t) + uG4(x, y, z, t) + G6(x, y, z, t) where

Gi are homogeneous polynomials of degrees i. Note that the term u3 has to appear in this

equation as otherwise the sextic would be passing through the singular point of WPS and

inherit its singularity.

Lemma 7.7. All triple points of a sextic hypersurface X in P[1 : 1 : 1 : 1 : 2] have to lie on

a sextic surface being a hyperplane section of X.

Proof. For A to be an (ordinary) triple point of X we need all the second derivatives of F

to vanish. In particular we need ∂2F
∂u2 = 6u + 2G2(x, y, z, t) = 0 and thus A has to lie on

V (3u+G2(x, y, z, t)) which is isomorphic to P3. This P3 cuts X in what is isomorphic to a

sextic surface. □
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We can perform the change of variables so the hyperplane section of X is u = 0.

Thus we can consider triple points of X as lying on a sextic surface in P3 which is the

vanishing locus of G6(x, y, z, t).

Lemma 7.8. Triple points of a sextic threefold X are also the triple points of its hyperplane

section S6 = V (G6).

Proof. Again we take a look at the partial derivatives. As we changed the variables so all

triple points lie in V (u) we can work in the chart x ̸= 0 and, if necessary move to y ̸= 0. We

consider ∂F
∂α = u2 ∂G2

∂α +u∂G4
∂α + ∂G6

∂α and ∂2F
∂α∂β = u2 ∂2G2

∂α∂β +u ∂2G4
∂α∂β +

∂2G6
∂α∂β for α, β ∈ {x, y, z, t}

depending on the charts. As these have to vanish at the point A with u = 0 we immediately

obtain that, slightly abusing notation, A is also at least triple on S6. To show that A cannot

be a point of higher multiplicity on S6 we look at the local equation of X around A. Assume

that A is a point of multiplicity 4 or higher on S6. Without loss of generality we can write

that A is [1 : 0 : 0 : 0 : 0]. Then the local equation of S6 around A is x2G̃4 + xG̃5 + G̃6

and the local equation of X around A begins with u3 + u2H1 + uH2 with Hi being forms of

degree i in Gi+1 effectively preventing it from being an ordinary triple point of X. □

From [11, Proposition 3.2] we know that if S6 is a normal surface it can have at most

10 (ordinary) triple points. Thus if we want to obtain more that 10 triple points on X we

need to assume that S6 is not normal. From that S6 needs to have at least one-dimensional

singular locus. We being with the case when dim(SingS6) = 2. This is for example the case

when S6 is a triple quadric.

Lemma 7.9. Sextic threefold in P(1 : 1 : 1 : 1 : 2) whose triple points lie on a hyperplane

section with a two-dimensional singular locus admits a singular curve.

Proof. We have X = V (u3+u2G2+uG4+G6). Note that on a curve C = V (u)∩ (V (G4))∩

(SingS6) ⊂ X all partials of X vanish. This finishes the proof. □

From now on we are only concerned with the case where S6 is a non normal surface

with one-dimensional singular locus.
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Proof of 7.6. Let X have the equation F (x, y, z, t, u) = u3+u2G2(x, y, z, t)+uG4(x, y, z, t)+

G6(x, y, z, t). Let G6 be the equation of a non-normal sextic surface with at least 11 triple

points, denote by Σ the set of these triple points. We modify the argument regarding the

polar bound to encompass the case where S6 is not normal. Let us consider |S5| - a linear

system of polar surfaces of S6 that is a system of quintic surfaces generated by the partial

derivatives of G6. The base locus of this system is a singular curve of S6 and a set Σ taken

with multiplicity two, thus the general member X5 of |S5| will be a quintic containing the

singular curve of S6 and having double points at Σ. Note that the dimension of intersection

of S6 and a general polar surface is 1 as expected and contains the singular curve of S6.

Now, S6, X5 and X4 = V (G4) should intersect only in a finite number of points. As we know

that all these surfaces contain points of Σ as triple or double points we can calculate degree

of this intersection to be at least 11 ∗ 3 ∗ 2 ∗ 2 = 132 which is more than expected 120 and

thus there needs to be at least a common curve of intersection for all these surfaces. As this

calculation is true for all polar surfaces of S6 this curve has to be contained in the singular

curve of S6 but then, from calculating the partials, it would be singular on X contradicting

the assumption on singular locus of X having only isolated ordinary triple points.

As for the proof of the final statement of the theorem it is enough to use the

equation X = V (u3 + G6) where G6 is any of the sextics with 10 OTPs as in [11] or [40].

It is clear that X cannot be singular for u ̸= 0 and for u = 0 only singularities are those on

V (G6) = S. Also, X misses the singular point of the WPS as there is a monomial u3 in its

equation. □

Remark 7.10. In [6, Remark 2.2] Cynk calculates the defect δ and the Hodge numbers of

an exemplary sextic threefold X ⊂ P(1 : 1 : 1 : 1 : 2) with equation of the form G = u3+G6

where V (G6) is one of the sextic surfaces with 10 triple points as described in [11]. In

particular he obtains δ = 10, h1,1(X) = 21 and h1,2(X) = 3.

7.4. Calabi-Yau threefolds with no triple points. We briefly discuss the complete

intersection threefold X2,2,2,2 ⊂ P7. In a similar spirit we mention two hypersurfaces in

weighted projective space that cannot admit triple points.
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Proposition 7.11. A complete intersection threefold X2,2,2,2 ⊂ P7 cannot have triple points.

Proof. We cannot obtain an ordinary triple point P as the tangent cone of X2,2,2,2 at P

needs to be a cone over a smooth cubic surface. This means that there could exist a change

of variables such that locally around P the equation of X2,2,2,2 would be F3 = x = y = z = 0.

As all the sixfolds are of degree 2 this cannot happen. □

Proposition 7.12. There can be no ordinary triple points on X8 ⊂ P(1 : 1 : 1 : 1 : 4) or

X10 ⊂ P(1 : 1 : 1 : 2 : 5).

Proof. Hypersurfaces we discuss cannot pass through the singular points of the ambient

projective spaces. In the case of an octic the singular point of the WPS is of higher mul-

tiplicity than we allow. In the case of the degree 10 hypersurface the point of multiplicity

5 is to be missed for the same reasons. We also have that X10 cannot pass through the

point of multiplicity 2 as then the singular point on X10 could not be an ordinary triple

point as 3 is not a multiple of 2. From the above the equation of X8 ⊂ P(1 : 1 : 1 : 1 : 4)

(X10 ⊂ P(1 : 1 : 1 : 2 : 5)) necessarily involves the term with the last variable u in the second

power. As we can choose coordinates so that the putative triple point is O = [1 : 0 : 0 : 0 : 0]

we see that in the chart x = 1 the equation of X begins with u2 meaning O cannot be a

triple point, a contradiction. □
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8. Appendix B: Open problems

It is natural to consider in our constructions more general singularities then triple

points.

8.1. Canonical singularities. Recall [35, Definition (1.1)] and [35, Definition (2.4)]:

Definition 8.1. A quasi-projective variety X has canonical singularities if it is normal and

if the following conditions hold:

(1) for some integer r we have ω
[r]
X locally free;

(2) for some resolution f : X̃ → X, and r as above f∗ω
⊗r
X̃

= ω
[r]
X .

Any singularity P of X such that these conditions hold locally in the neighbourhood of P

is called a canonical singularity.

Definition 8.2. A Gorenstein point P ∈ X is rational (elliptic) if for a resolution f : X̃ → X

we have f∗ωX̃ = ωX (f∗ωX̃ = mP · ωX).

Also recall [35, Corollary (2.10)]:

Corollary 8.3. To a rational Gorenstein 3-fold point P ∈ X we can attach a natural number

k ≥ 0 such that:

(1) k = 0 if and only if P is a cDV point

(2) k ≥ 1 if the general section H through P has an elliptic Gorenstein point P ∈ H

with invariant k

(3) if k ≥ 2 then k = multPX

(4) if k ≥ 3 then k + 1 = dimm/m2
P .

Resolution of rational Gorenstein singularities does not change the canonical class

of a variety. We are interested in the possibility of constructing Calabi-Yau threefolds con-
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taining a cone whose vertex is a such a point and that their resolution would admit a

(smoothable) type III contraction.

We begin by discussing the examples of threefolds containing a cone over a curve

with vertex being a point that locally looks like the complete intersection of two quadrics.

This is an isolated rational Gorenstein point with invariant k = 4 (as in [18, 3.3]). In the

latter we call it a (2, 2) point for brevity. Below we present our constructions of Calabi-Yau

threefolds with a (2, 2) singularity at the vertex of a cone over a curve.

8.2. Complete intersection threefolds with (2, 2) point at the vertex of a cone.

8.2.1. Complete intersection X2,2,2,2. We want to obtain threefold in P7 obtained as an

intersection of four six-dimensional hypersurfaces of degree 2 containing a (2, 2) singularity.

To that aim we can assume two quadrics to be cones in P7. We need the curve C to be

contained in 4 quadrics in P6 and also in two hyperplanes in P6 making it effectively a

curve in P4 contained in the intersection of four quadrics. Let A1, B1 be the equations of

the hyperplanes and A2, B2, C2, D2 the equations of quadrics. Then X2 = V (x7A1 + A2),

Y2 = V (x7B1 + B2), Z2 = V (C2) and W2 = V (D2) describe 4 quadrics containing a cone

over the given curve in P7 and so their intersection is a Calabi-Yau threefold with a (2, 2)

singularity at the vertex of the cone.

8.2.2. Complete intersection X3,3. To construct desired threefold we require two quadrics

and two cubics in P4 containing the same curve. Let A2, B2 and A3, B3 be the equations of

quadrics and cubics respectively. Then the complete intersection in P5 of X3 = V (x5A2+A3)

and Y3 = V (x5B2 + B3) is the desired Calabi-Yau threefold containing a cone over a curve

with a (2, 2) singularity at the vertex of the cone.

8.2.3. Complete intersection X2,4. Now we need two quadrics V (A2), V (B2) and a quartic

V (B4) containing a given curve in P4. Then the intersection of X2 = V (A2) and X4 =

V (x25B2 + B4) in P5 is the desired threefold. We may also consider a cubic hypersurface
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V (B3) containing the curve and thus obtain X4 = V (x25B2 + x5B3 + B4) but it is not

necessary for the construction.

8.2.4. Complete intersection X2,2,3. We may either obtain the singular point as the inter-

section of two cones in P6 over quadrics in P5 intersected with a smooth cubic hypersurface

or as an intersection of a cone over quadric and a cubic hypersurface having a double point

with a smooth quadric. In the first case we need V (A2), V (B2), V (C1) and V (C3) in P5, two

quadrics, a cubic and a hyperplane containing a given curve. Then by writing X2 = V (A2),

Y2 = V (B2), Z3 = V (x26C1 + C3) in P6 we obtain the desired threefold as an intersection

X2 ∩ Y2 ∩ Z3. In the second case we need a hyperplane V (A1), quadrics V (A2), V (B2),

V (C2) and a cubic V (C3) containing a curve in P5. Then in P6 we have X2 = V (x6A1+A2),

Y2 = V (B2) and Z3 = V (x6C2 +C3). Again we intersect X2 ∩ Y2 ∩Z3 to obtain the desired

threefold. We see that the second construction is more restrictive as it requires more quadrics

in P5 to contain the original curve. It happens because in the first case we do not require the

cubic hypersurface in P6 to have an x6C2 as a part of its equation which would have evened

out the number of restrictions. Thus it is easy to see that any threefold obtainable in the

second manner should have its counterpart in the first one - meaning a complete intersection

threefold containing a cone over the same curve, with a (2, 2) singularity at the vertex.

The formula to calculate the Hodge numbers of constructed threefolds is yet to be

obtained as the (2, 2) point provides more complications than the ordinary triple point. In

particular we do not know how to calculate the defect of such threefold. When we discuss

other canonical singularities we arrive at the more general open problem.

Problem 8.4. Let P1, . . . , Pn be isolated canonical singularities. What is the formula for

the defect of a Calabi-Yau threefold X arising as a resolution of a threefold X̄ containing mi

singularities of type Pi for i ∈ {1, . . . n} and mi ∈ Z>0?

8.3. Calabi-Yau threefolds with singular points. In spirit of the problems from Ap-

pendix A we can also ask the following:
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Problem 8.5. Let P1, . . . , Pn be isolated canonical singularities and X one of the Calabi-

Yau complete intersection threefolds. Assume that X admits only singularities of types Pi.

What is the maximal number µPi(X) of singularities Pi that a threefold X can admit? What

are the possible n-tuples (µP1 , . . . µPn) such that X can admit simultaneously µPi points of

type Pi as the only singularities.

In particular the still open problem of finding µ3(X5) - the maximal number of

ordinary triple points on a quintic threefold - is of this type.
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9. Appendix C: Calculations

9.1. Defect of quintic threefold and sextic threefold with triple and double or-

dinary points. Here we present the code for calculating the defect of quintic threfolds in

P4 and sextic threefolds in weighted projective space with triple and double points. Here

X denotes the ideal generated by the defining equation F5 or F6. The triple point of X is

[1 : 0 : 0 : 0 : 0 : 0].

J=ideal singularLocus X

O=ideal(y,z,t,u)

O3=O^3

JR=J:O^17

JO=J+O3

JJ=intersect(JO,JR)

J6=basis(6,JJ)

Let j6 denote the cardinality of J6. Now the defect is just δ = 175− j6−µ2−11 for sextic in

P(1 : 1 : 1 : 1 : 2) as per formula above. Analogous calculations of a quintic threefold differ

by calculating

J5=basis(5,JJ)

instead of J6 at the last step. Then the formula for the defect is δ = 101− j5 − µ2 − 11.

9.2. Defect of complete intersection threefolds with triple and double ordinary

points. Let X be the complete intersection threefold X2,4 or X3,3. The minors of Jac(X)

necessarily vanish at the singular points of X. In particular it may happen that one of the

rows of Jac(X) vanishes at some singular points of X. To avoid that we use matrix M whose

rows are linear combinations of rows of Jac(X) which do not vanish at any singular points

of X.



72

O=ideal(x,y,z,t,u)

O3=O^3

JR=J:O^17

JO=J+O3

JM=intersect(M,JO,JR)

M5=super basis(5,M)

J5=super basis(5,JM)

Again putting j5 to denote the number of elements of J5 we obtain formulae δ = 89− j5 −

11− µ2 for the defect of X2,4 and δ = 73− j5 − 11− µ2 for the defect of X3,3.
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Table 1. Intersection of curves and divisors on Calabi-Yau threefolds

HX E D

l 1 -2 1

t 1 0 1

r 0 1 0

h 0 a −3

ei 0 bi −1

C0 0 a2 − Σb2i −3a+Σbi
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Table 2. Curves at a basis of a cone in X̄5

C g(C) KC a b1 b2 b3 b4 b5 b6

C1 0 -2 1 1 1 0 0 0 0

C2 0 -2 1 1 0 0 0 0 0

TC 0 -2 1 0 0 0 0 0 0

C3 1 0 3 1 1 1 1 1 1

C4A 1 0 4 2 2 1 1 1 1

C4B 0 -2 4 3 1 1 1 1 1

C5A 2 2 5 2 2 2 2 1 1

C5B 2 2 4 2 1 1 1 1 1

C6 4 6 7 3 3 3 2 2 2

C2,3 3 4 6 2 2 2 2 2 2

C7A 1 0 3 1 1 0 0 0 0

C7B 5 8 7 3 3 2 2 2 2

C7C 4 6 7 4 2 2 2 2 2

C8A 6 10 8 3 3 3 3 3 1

C8B 7 12 7 3 2 2 2 2 2

C9A 10 18 9 4 4 3 3 2 2

C9B 9 16 11 4 4 4 4 4 4

C3,3 8 14 9 3 3 3 3 3 3

C10A 12 22 11 4 4 4 4 4 3

C10B 11 20 10 4 4 4 3 3 2

C11 15 28 11 4 4 4 4 3 3

C3,4 19 36 12 4 4 4 4 4 4

C3,5 31 60 15 5 5 5 5 5 5
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Table 3. Divisor L on X5

L|D

X β L L3 a b1 b2 b3 b4 b5 b6

X1 −1 3H-D+E 140 4 2 2 1 1 1 1

X2 0 2H+E 0 1 1 0 0 0 0 0

XTC 0 2H+E 54 1 0 0 0 0 0 0

X3 1 H+D+E 8 0 0 0 0 0 0 0

X4A 0 2H+E 64 4 2 2 1 1 1 1

X4B 0 2H+E 60 4 3 1 1 1 1 1

X5A 1 H+D+E 12 2 1 1 1 1 0 0

X5B 1 H+D+E 12 1 1 0 0 0 0 0

X6 1 H+D+E 0 4 2 2 2 1 1 1

X2,3 2 2D+E 16 0 0 0 0 0 0 0

X7A 0 2H+E 82 3 1 1 0 0 0 0

X7B 1 H+D+E 24 4 2 2 1 1 1 1

X7C 1 H+D+E 20 4 3 1 1 1 1 1

X8A 1 H+D+E 28 5 2 2 2 2 2 0

X8B 2 2D+E 0 1 1 0 0 0 0 0

X9A 2 2D+E 4 3 2 2 1 1 0 0

X9B 1 H+D+E 2 5 2 2 2 2 2 2

X3,3 3 -H+3D+E 36 0 0 0 0 0 0 0

X10A 2 2D+E 8 5 2 2 2 2 2 1

X10B 2 2D+E 4 4 2 2 2 1 1 0

X11 3 -H+3D+E 0 2 1 1 1 1 0 0

X3,4 4 -2H+4D+E 8 0 0 0 0 0 0 0
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Table 4. Degree of a variety Y5 and Hodge numbers of a variety Ỹ5

Y deg(C) deg Y Ỹ h1,1(Ỹ ) h1,2(Ỹ )

Y1 1m 340m3 - - -

Y2 4m 48m3 - - -

YTC 1m 54m3 - - -

Y3 3m 58m3 Ỹ3 ? ?

Y4A 4m 64m3 Ỹ4A ? ?

Y4B 2m 60m3 - - -

Y5A 7m 74m3 Ỹ5A 2 55

Y5B 7m 74m3 Ỹ5B 2 55

Y6 10m 84m3 Ỹ6 2 52

Y2,3 12m 88m3 Ỹ2,3∗ 2 57

Y7A 7m 98m3 - - -

Y7B 15m 82m3 Ỹ7B∗ 2 54

Y7C 13m 94m3 Ỹ7C∗ 2 49

Y8A 18m 108m3 Ỹ8A∗ 2 51

Y8B 20m 112m3 Ỹ8B 2 56

Y9A 25m 126m3 Ỹ9A 2 58

Y9B∗ 23m 122m3 Ỹ9B∗ 2 53

Y3,3 27m 130m3 Ỹ3,3∗ 2 63

Y10A 32m 144m3 Ỹ10A∗ 2 65

Y10B 30m 140m3 Ỹ10B∗ 2 60

Y11 39m 162m3 Ỹ11∗ 2 72

Y3,4 48m 184m3 Ỹ3,4 2 84

Y3,5 75m 250m3 Ỹ3,5∗ 1 119
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Table 5. Curves at a basis of a cone in X̄2,4

C g(C) KC a b1 b2 b3 b4 b5 b6

C1 0 -2 1 1 1 0 0 0 0

C2 0 -2 1 1 0 0 0 0 0

TC 0 -2 1 0 0 0 0 0 0

C4 1 0 4 2 2 1 1 1 1

C5 2 2 5 2 2 2 2 1 1

C2,3 3 4 6 2 2 2 2 2 2

Table 6. Curves at a basis of a cone in X̄3,3

C g(C) KC a b1 b2 b3 b4 b5 b6

C1 0 -2 1 1 1 0 0 0 0

C2 0 -2 1 1 0 0 0 0 0

TC 0 -2 1 0 0 0 0 0 0

C3 1 0 3 1 1 1 1 1 1

C4 1 0 4 2 2 1 1 1 1

C5 2 2 5 2 2 2 2 1 1

C2,3 3 4 6 2 2 2 2 2 2

C9 8 14 9 3 3 3 3 3 3
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Table 7. Divisor L on X2,4

L|D

X β L L3 a b1 b2 b3 b4 b5 b6

X1 −1 3H-D+E 221 4 2 2 1 1 1 1

X2 0 2H+E 72 1 1 0 0 0 0 0

XTC 0 2H+E 78 1 0 0 0 0 0 0

X4 0 2H+E 88 4 2 2 1 1 1 1

X5 1 H+D+E 15 2 1 1 1 1 0 0

X6 2 2D+E 0 0 0 0 0 0 0 0

Table 8. Divisor L on X3,3

L|D

X β L L3 a b1 b2 b3 b4 b5 b6

X1 −1 3H-D+E 80 4 2 2 1 1 1 1

X2 0 2H+E 12 1 1 0 0 0 0 0

XTC 0 2H+E 86 1 0 0 0 0 0 0

X3 1 H+D+E 96 0 0 0 0 0 0 0

X4 0 2H+E 16 4 2 2 1 1 1 1

X5 1 H+D+E 0 2 1 1 1 1 0 0

X6 2 2D+E 0 0 0 0 0 0 0 0
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Table 9. Degree of a variety Y2,4 and Hodge numbers of a variety Ỹ2,4

Y deg(C) deg Y Ỹ h1,1(Ỹ ) h1,2(Ỹ )

Y1 1m 548m3 - - -

Y2 4m 72m3 - - -

YTC 1m 78m3 - - −

Y4 4m 88m3 Ỹ4 2 58

Y5 7m 98m3 Ỹ5 2 58

Y6 12m 112m3 Ỹ6A 2 62

Table 10. Degree of a variety Y3,3 and Hodge numbers of a variety Ỹ3,3

Y deg(C) deg Y Ỹ h1,1(Ỹ ) h1,2(Ỹ )

Y1 1m 596m3 − - −

Y2 4m 80m3 − - −

YTC 1m 86m3 - - −

Y3 1m 90m3 Ỹ3 ? ?

Y4 4m 96m3 Ỹ4A 2 46

Y5 7m 106m3 Ỹ5A 2 46

Y6 12m 120m3 Ỹ6 2 48

Y9 27m 162m3 Ỹ9∗ 1 70
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Table 11. Curves at a basis of a cone in X̄6

C g(C) KC a b1 b2 b3 b4 b5 b6

C1 0 -2 1 1 1 0 0 0 0

C2 0 -2 1 1 0 0 0 0 0

C3 1 0 3 1 1 1 1 1 1

Table 12. Divisor L on X6

L|D

X β L L3 a b1 b2 b3 b4 b5 b6

X1 −1 3H-D+E 167 4 2 2 1 1 1 1

X2 0 2H+E 56 1 1 0 0 0 0 0

X3 1 H+D+E 9 0 0 0 0 0 0 0

Table 13. Degree of a variety Y6

Y deg(C) deg Y

Y1 1m 404m3

Y2 4m 56m3

Y3 3m 66m3
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Table 14. Hodge numbers of Calabi-Yau threefolds from threefolds with

triple points

X µ3(X) δ h1,1(X) h1,2(X)

X2,4 7 16 24 94

X3,3 3 6 10 68

X3,3 6 12 16 74

X3,3 9 26 36 88

X6(1) 1 1 3 77

X6(2) 1 1 3 65

X6(3) 1 1 3 57

Table 15. Bound of number of ordinary triple points on Calabi-Yau threefolds

X µ3(X)

X5 ⊂ P4 10 or 11

X3,3 ⊂ P5 9 ≤

X2,4 ⊂ P5 7 ≤ · · · ≤ 10

X2,2,2,2 ⊂ P7 0

X6 ⊂ P(1 : 1 : 1 : 1 : 2) 10

X8 ⊂ P(1 : 1 : 1 : 1 : 4) 0

X10 ⊂ P(1 : 1 : 1 : 2 : 5) 0
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