Abstract

The dissertation is dedicated to the analysis of light propagation in curved spacetimes
of general relativity, within the framework of geometrical optics approximation. Its main
idea is to apply effective methods of dynamical systems theory to this classical problem,
inherently linked with the main themes of general relativity.

The starting point is the equivalence principle, which implies that the trajectories of
light rays in spacetime are null geodesics. The equations describing geodesics take the
form of second-order Lagrange equations derived from a simple Lagrangian quadratic
in velocities, provided the evolution parameter (the so-called affine parameter) is ap-
propriately chosen. Null geodesics are additionally characterized by the vanishing of the
"energy"integral. In flat spacetime, Fermat’s principle of the shortest time is a useful tool
for describing the propagation of light rays. Its generalization to curved spacetimes descri-
bing constant gravitational fields, both static and stationary, has long been established.
Fermat’s principle has also been formulated for arbitrary gravitational fields; however, in
this case, it has a less natural and functional form. One of the main results of the disserta-
tion is a new version of Fermat’s principle for arbitrary gravitational fields. The starting
point is a simple theorem proven in the dissertation. We consider a Lagrange function L
that satisfies the following conditions: (i) L is a non-degenerate, homogeneous function of
generalized velocities of the second degree; (ii) L does not depend on the evolution para-
meter. By selecting an arbitrary value of energy, one can solve the equation £ = L for
one of the generalized velocities. It turns out that the obtained solution defines a new La-
grange function describing reduced trajectories in the configuration space parameterized
by the remaining generalized coordinates. This simple and elegant result comes at a cost:
L is a generalized Lagrangian that depends on the action variable. Such generalization is
described by the so-called Herglotz formalism, which is as well-developed as the standard
formalism of analytical mechanics. Consequently, the version of Fermat’s principle pro-
posed in the dissertation provides effective tools for analyzing various specific problems,
including an alternative formulation of Fermat’s principle, which finds clear justification
within the framework of the Herglotz variational principle.

The second main result of the dissertation is based on the observation that in the
case of geometries describing black holes, the equations derived from Fermat’s principle
describe nonlinear oscillations. In particular, in the asymptotic region, these are small
oscillations. Approximate solutions to equations describing small nonlinear oscillations
take the form of a series expansion in the amplitude of such oscillations. The correct
expansion is described by the Lindstedt—Poincaré algorithm. Applying this algorithm
to the problem of light propagation in the asymptotic region leads to a description that
accurately reflects both the qualitative and quantitative characteristics of the trajectories.
In particular, it provides an elegant method for calculating the deflection angle of light
rays in the field of a black hole.

The last problem considered in the dissertation concerns the propagation of light rays
in the Kerr metric. From the perspective of the dynamics describing geodesic trajecto-
ries in four-dimensional spacetime, this is an integrable system in the sense of Arnold—
Liouville. The integrals of motion are: the Lagrangian L (coinciding with the Hamilto-
nian), the generalized momenta conjugate to the temporal and azimuthal coordinates,
and the so-called Carter constant, generating symmetry transformations that are not po-
int transformations. In the dissertation, null geodesics are analyzed within the framework
of Fermat’s principle. An appropriate Lagrange function can be chosen so that the evo-
lution parameter is the azimuthal angle. This yields a two-dimensional dynamical system
with a configuration space parameterized by the radial variable r and the zenith distance



6. The corresponding Hamiltonian is quite complex, but the problem can be simplified
by applying the so-called constant-coupling metamorphosis method. The unparametrized
trajectories of the original Hamiltonian, corresponding to different energy values, can be
described as zero-energy trajectories of a family of Hamiltonians which parameters are
functions of the original energies. This results in a much simpler description of null geo-
desics in the Kerr metric within the framework of a two-dimensional integrable system
in the sense of Arnold-Liouville. An additional redefinition of the evolution parameter
allows complete separation of variables, reducing the problem to the dynamics of two
independent nonlinear Newtonian oscillators.



